
STGraph how-tos vers. 8.8.10

Table of Contents
How to create a basic model

Introduction
A step-by-step procedure

How to document a model
Introduction
Model documentation
Node documentation

How to operate with custom properties
Introduction
General properties
Properties related to interrupt conditions
Properties used in STGraphWeb

How to operate with arrays
Introduction
Generating an array
Getting the size and the order of an array
Modifying an array
Extracting elements / subarrays from an array
Setting elements / subarrays of an array
Applying functions to an array

How to operate with the conditional function if()
Introduction
The conditional function

How to operate with iterator meta-functions
Introduction

The reduction meta-function
The scan meta-function
The pairscan meta-function
The iter meta-function
Some examples

How to operate with submodels
Introduction
Creating and using a submodel
Documenting a submodel

How to define a new function
Introduction
Functions defined in graph nodes
Functions defined in XML files

How to operate with Property Changer
Introduction
Specifications for conditions
Specifications for actions
Examples

How to generate models for the web
Introduction
General rules
Node type identification
Input types
Output types

Note: the references to the STGraph UI in these how-tos are to
menu items; the possible correspondence to contextual menus
(right click) and toolbars are left to the reader.

Note: in all examples of these how-tos the index origin of arrays is
assumed to be 0 (it can be set to 1 in the model definition dialog
([Edit | Edit Model Definition...]).

STGraph how-tos How to create a basic model

How to create a basic model

Introduction

The main front-end of STGraph is a GUI interactive editor, which
allows the user to create graphs with usual drag-and-drop
techniques. As usual the same result can be usually obtained with
different techniques (menu item selection, toolbar icon selection,
contextual right-click, keyboard shortcut).

A step-by-step procedure

When just started, STGraph presents the following window:

To create a new model select [File | Create New Model] (or
click on the first icon of the toolbar, or ctrl-N: in the following such
lists of alternatives will be avoided). This is the result:

A blank, still unnamed, sheet has been created. Let us introduce a
couple of nodes with [Insert | Insert Variable Node] and
move / resize them with the usual techniques.

By moving the mouse pointer to the center of the node node1, and
drag-and-drop to node2, we create an arrow from node1 to node2:

STGraph how-tos How to create a basic model

Control points can be added and removed to the arrow by shift-left
clicking:

The graphical editor always checks that the graph is syntactically
correct, and in particular prevents introducing parallel and loop
arrows.

Node shapes are automatically set by STGraph: in particular
ellipses represent algebraic variables (the default type), and the
black arrow entering a node indicates that it is an input node, i.e., it
has no incoming arrows.

By double clicking on the two nodes, their property window opens
and some of their properties can be changed:

• change the default name node1 to rate (note that STGraph
is case sensitive); set 0.1 as output function;

• change the default name node2 to amount; change its type
to ‘state’; set 10 as initial state and this+this*rate as
state transition; finally, set the ‘is output?’ switch on.

This is the property window for the second node:

and this is the resulting graph:

The shape contour of the nodes is now continuous, to represent the
fact that their quantitative component has been correctly defined.
Furthermore, note the new shapes of rate (a constant) and amount
(a state). The black arrow leaving a node indicates that it is an
output node, i.e., a node whose values can be observed by some
external device or model.

STGraph how-tos How to create a basic model

Let us introduce one of such devices: an output widget, for example
a chart, by selecting [Insert | Insert Chart as Output
Widget], and modify its properties by double clicking in its (still
empty) image. Let us introduce a new series, having vTime (the
system defined vector of simulation time instants) as X variable and
amount as Y variable (note that amount is listed among the
observable variables because it was set as an output variable).

The model can be now simulated, by selecting [Execute | Run
the Simulation Process], or in interactive, step-by-step,
execution, by the related menu items (but take a look at the toolbar
icons...). This is the result:

The chart X axis shows that the simulation has been run from time
0 to 10. These are global properties of the model, that can be
changed by selecting [Edit | Edit Model Definition] (double
clicking the sheet background).

STGraph how-tos How to document a model

How to document a model

Introduction

A good model is a documented model, i.e., a model whose
components can be easily and readily understood.

STGraph offers several means for introducing documentation items
directly and contextually in the model, and then for possibly
exporting them in a structured way to external files.

All documentation items are optional.

Model documentation

[Edit | Edit definition...] (while neither nodes nor widgets
are selected) opens a dialog allowing to set a name and a general
description for the model, together with a name for the time unit.
This data is included in the Definition data of the model
window ([Analyze | Show Definition...] while neither nodes
nor widgets are selected) and in the Complete information of
the model window ([Analyze | Show Complete Info on
Model...]).

[Insert | Insert Text Comment] inserts a text comment that
can be edited and formatted with a point-and-click by a WYSIWYG
editor. The whole graph image, including the inserted texts, can be
exported to external programs via the clipboard by [Tools | Copy
Graph Image to Clipboard].

Node documentation

The dialog for editing node properties ([Edit | Edit
Definition...] while a node is selected) allows to insert various
documentation items related to the currently selected node:

• tab Further: a Documentation text can be set;
• tab Custom: several custom properties can be set (see How

to operate with custom properties).
This data is also included in the Complete information of the
model window ([Analyze | Show Complete Info on
Model...]).

STGraph how-tos How to operate with custom properties

How to operate with custom properties

Introduction

With each graph node a list of optional custom properties is
associated, each of them expressed as a couple name=value.
While such properties can be freely assigned for documentation,
some of them, with given names, are predefined together with their
behavior, as follows (note that names are case-sensitive).

General properties

• Name: descriptive name of the node (it can include spaces
and other special characters), displayed alternatively to the
variable name in the node tooltip

• Unit: evaluation / measurement unit, displayed in the node
tooltip

Properties related to interrupt conditions

(these properties are used in computation only if in the model
definition dialog ([Edit | Edit definition...] while neither
nodes nor widgets are selected) the Handle interrupts? switch
is activated)

• Min: minimum allowed value, displayed in the node tooltip
(also used in STGraphWeb)

• Max: maximum allowed value, displayed in the node tooltip
(also used in STGraphWeb)

All the following On... properties execute the macro specified by

value and operate on the current value only for scalar nodes:

• OnBelowMin: execute if less than Min

• OnAboveMax: execute if greater than Max

• OnZero: execute if equal to zero

• OnTrue: execute if greater than zero

• OnFalse: execute if equal or less than zero

The macro can be:

• pause("message"): pause and display message in a dialog
to continue or stop the simulation

• end("message"): display message in a dialog and stop the
simulation

Properties used in STGraphWeb

(see How to generate a model for the web).

STGraph how-tos How to operate with arrays

How to operate with arrays

Introduction

STEL has a single data type: array.

Arrays are n dimensional structures (n being a non-negative
integer), characterized by their order, i.e., the number n of their
dimensions, and their size, i.e., the number of elements for each
dimension. Hence:

• 0-order arrays are scalars
(e.g., -4, 1.2, and 2.3E4 are scalars);
the size of scalars is 0;

• 1-order arrays are vectors of scalars, and their size is a non-
negative scalar
(e.g., [-4, 1.2, 2.3E4] is a [3]vector, i.e., a vector of size
3 because with 3 scalar elements)
(e.g., [] is a [0]vector, i.e., a vector of size 0);

• 2-order arrays are matrices of scalars, in fact (column)
vectors of (row) vectors
(e.g., [[-4,1.2,2.3E4],[2,3,4]] is a [2,3]matrix, i.e., of
size 2x3 because with 2 rows and 3 columns, and therefore
with globally 6 scalar elements)
(e.g., [[]] is a [0,0]matrix);

• higher order arrays can also be generated
(e.g., [[[1,2],[3,4]],[[5,6],[7,8]]] is a
[2,2,2]tensor).

Any n>0-order array can be thought of as a sequence of n-1-order

subarrays
(e.g., a [2,3]matrix as a sequence of 2 [3]vectors)
(e.g., a [4,3,2]tensor as a sequence of 4 [3,2]matrices, and
therefore, recursively each of them as 3 [2]vectors).

Arrays have always a normal form, i.e., all their subarrays have the
same size.

Arrays are dynamic structures, since the number of elements of any
of their dimensions can be increased by adding new elements and
decreased by removing existing elements.

Each element of an n>0-order array is identified by a [n]vector of
indexes.

Generating an array

While a 0-order array is directly defined by its scalar value, an n>0-
order array can be generated in several ways, basically:

• for each dimension, by explicitly listing the array elements
(e.g., the [3]vector [10,20,30])
(e.g., the [2,3]matrix [[1,2,3],[4,5,6]], whose element
in 0-th row and 0-th column is the scalar 1, the element in 0-
th row and 1st column is the scalar 2, and so on)
or by defining the sequence of the array elements by means
of the operator :
(e.g., [3:5] is the [3]vector [3,4,5])
(e.g., [6:4] is the [3]vector [6,5,4])
(e.g., [2:3:8] is the [3]vector [2,5,8])
(e.g., [[1:3]] is the [1,3]matrix [[1,2,3]])
(e.g., [[1:3],[2, 3, 4]] and [[1:3],[2:4]] are both the
[2,3]matrix [[1,2,3],[2,3,4]]);

STGraph how-tos How to operate with arrays

• by applying the function array(s,x), where s is the n-order
vector [s0,...,sn-1], that generates a n-order [s0,...,sn-

1]array by evaluating the expression x for all the array
elements
(e.g., array([2,3],0) generates the [2,3]matrix
[[0,0,0],[0,0,0]]);
the expression x can contain the system variables $i0, $i1,
…, each of them spanning over the corresponding index
range, i.e., from 0 to s0-1 for the 0-th dimension, and so on
(e.g., array([3],$i0^2)(or equivalently array(3,$i0^2))
generates the [3]vector [0,1,4])
(e.g., array([2,2],$i0*$i1) generates the [2,2]matrix
[[0,0],[0,1]]).

It is worth noting some distinctions:

• 123 and [123] are different, as the first is a scalar and the
second is a [1]vector;

• [1,2,3], [[1,2,3]], and [[1],[2],[3]] are different, as
the first is a [3]vector, the second is a [1,3]matrix, and the
third is a [3,1]matrix.

The empty vector is [], the empty matrix is [[]], and so on, while
by convention the empty scalar is 0.0.

By means of the function array such empty arrays can be
generated by array([0],0), array([0,0],0), and so on. This
shows that an empty n-order array can be parametrically generated
by array(array(n,0),0).

Getting the size and the order of an array

The function size(a) (shortcut: @a) returns the size of the array a
(e.g., @[[1,2,3],[4,5,6]] returns [2,3]).

The function order(a) returns the order of an array (e.g.,
order([[1,2,3],[4,5,6]]) returns 2).

Modifying an array

An n>0-order array a can be modified in several ways, basically:

• by resizing a by means of the function resize(a,v), where
v is the vector of the new size
(e.g., resize([0,1,2,3,4,5],[2,3]) generates the
[2,3]matrix [[0,1,2],[3,4,5]]);
the resizing operation is performed by possibly trimming the
exceeding elements or padding with 0 the missing elements
(e.g., resize([[1,2],[3,4]],[3]) generates the
[3]vector [1,2,3]) and resize([[1,2],[3,4]],[5])
generates the [5]vector [1,2,3,4,0]);

• by transposing a by means of the function transpose(a),
that generates an array of the same order than a, and whose
first dimension is the last one of a and so on
(e.g., transpose([[[1.0,2.0,3.0],[4.0,5.0,6.0]]]),
that is a [1,2,3]array, generates the [3,1,2]array
[[[1.0,4.0]],[[2.0,5.0]],[[3.0,6.0]]]);

• by concatenating a with an array b by means of the function
conc(a,b) (shortcut: a#b).
As a general rule, a and b must be of the same order and if
n is such order then the size of the first n-1 dimensions must

STGraph how-tos How to operate with arrays

be the same, so that, e.g, from the concatenation of a
[4,3,2]array with a [4,3,1]array a [4,3,3]array is
obtained
(e.g., [[1,2],[3,4],[5,6]]#[[7],[8],[9]] generates
the [3,3]matrix [[1,2,7],[3,4,8],[5,6,9]]).
A simplification is allowed to this rule, as the order of b can
be n-1 and the size of the first n-1 dimensions of a and the
dimensions of b must be the same (the same holds by
reversing a and b); in this way, in particular, scalars and
vectors can be freely concatenated with each others, and a
vector is generated
(e.g., 1#2, [1]#2 and [1]#[2] all generate the [2]vector
[1,2])
and [i0,i1]matrices can be concatenated with [i0]vectors
(e.g., [[1,2],[3,4],[5,6]]#[7,8,9] generates the
[3,3]matrix [[1,2,7],[3,4,8],[5,6,9]]);

• by removing (i.e., “decatenating”) b elements from the last
dimension of a by means of the function dec(a,b) (shortcut:
a##b) (the same holds by reversing a and b).
(e.g., [[1.0,2.0,3.0],[4.0,5.0,6.0]]##1 generates the
[2,2]matrix [[1,2],[4,5]])
(e.g., [[1.0,2.0,3.0],[4.0,5.0,6.0]]##2 generates the
[2,1]matrix [[1],[4]])
(e.g., 2##[[1.0,2.0,3.0],[4.0,5.0,6.0]] generates the
[2,1]matrix [[3],[6]]);

Extracting elements / subarrays from an array

Both single elements and subarrays can be extracted from an n>0-
order array a by means of the function get(a,i0,i1,...) (shortcut:

a[i0,i1,...]), where i0,i1,... are indexes, respectively for the
dimension 0, 1, …

Each index can be either the null vector (i.e., []), or a scalar, or a
non-null vector:

• if it is the null vector (or the index is not specified), then all
components for the related dimension are selected;

• if it is a scalar, then the component whose index is the scalar
for the related dimension is selected;

• if it is a non-null vector, then all components whose indexes
are in the vector for the related dimension are selected

(e.g., if a is a [3,3]matrix then:
- a[0,1], and a[[0],[1]] are equivalent and extract the element
at the 0-th row and 1-th column of a;
- a[0], a[[0]], a[0,[]], and a[[0],[]] are equivalent and
extract the 0-th row of a;
- a[[],1] and a[[],[1]] are equivalent and extract the 1-th
column of a;
more advanced usages are:
- a[[0,1]] extracts the [2,3]matrix of the 0-th and the 1-th rows
of a;
- a[[2,1,0]] extracts the [3,3]matrix of the 2-th, the 1-th, and the
0-th rows, in this order, of a;
- a[[0,2],[0,2]] extracts the [2,2]matrix of the elements of a
whose indexes are both even numbers).

Setting elements / subarrays of an array

Complementary to the function get(a,i0,i1,...), the function
set(a1,i0,i1,...,a2) substitutes the subarray get(a,i0,i1,...)

STGraph how-tos How to operate with arrays

with the array a2.

Applying functions to an array

STEL is equipped with a fair amount of functions and operators,
many of them behaving in a polymorphic way on arrays:

• monadic functions are computed element by element
(e.g., -[0:2]) is equivalent to [-0,-1,-2], and
sin([0:2]) is equivalent to [sin(0),sin(1),sin(2)]);

• dyadic functions are computed element by element in two
cases:
- when the two operands have the same size (and therefore
the same order)
(e.g., [[0,1],[2,3]]+[[10,20],[30,40]] equals to
[[10,21],[32,43]]);
- when one operand is scalar
(e.g., [[0,1],[2,3]]^2 equals to [[0,1],[4,9]]);
possible, i.e., in the cases (x stands for a vector or a matrix
and s for a scalar; commutativity is left to the reader).

Finally, the available iterator meta-functions (reduction f/, scan f\,
pairscan f|, and iter) where f is a dyadic function, can be applied
to any n>0-order array
(see How to operate with iterator meta-functions).

STGraph how-tos How to operate with the conditional function if()

How to operate with the conditional
function if()

Introduction

Being a purely functional language, STEL does not include any
statement, and control structures are expressed by means of
functions in their turn. This applies in particular to the conditional
structure.

The conditional function

The if() function operates as a chain of if ... then ... else if ...
then ... Its simplest form:

if(c,v1,v2)

is equivalent to the structure if c then v1 else v2.

The general form of the conditional function is:

if(c1,v1,...,cn,vn,vn+1)

with an odd number 3 of arguments, and such that the arguments
in odd position but the last one are conditions ci and the other ones
are values vj.

The first true condition selects the value that follows in the
argument list, whereas the last value is selected if all conditions are
false

(e.g., if(1,2,3) equals to 2)
(e.g., if(0,2,0,3,4) equals to 4).

The conditional function behaves “as polymorphically as possible”:

in particular, if c1, v1, and v2 arrays of the same dimension, it
produces an array of that dimension, such that (in the case of
vectors for the sake of simplicity) if(c,v1,v2) is a vector v3 such
that for each i, v3[i] equals to v1[i] if c1[i] is true and to v2[i]
otherwise

(e.g., if([1,0],2,3) equals to [2,3]).

Accordingly, the rule for the general form is: the conditions ci must
have the same dimension; if the conditions are scalars, the values
vj are not constrained in their dimension; otherwise they must have
the same dimension of the conditions or they must be scalars.

STGraph how-tos How to operate with iterator meta-functions

How to operate with iterator meta-
functions

Introduction

By default, in STEL any dyadic function is computed element by
element
(e.g., max([2,4],[3,1] equals to [3,4])
(e.g., [[0,1],[2,3]]+[[10,20],[30,40]] equals to [[10,21],
[32,43]]).

On the other hand, it is sometimes useful for a dyadic function to be
applied in a different way, such as in the case of summation, where
the same operator, +, is computed on the first two elements of the
given vector, then on the result and the third element, and so on.

This behavior can be generalized by admitting that any dyadic
operator can be iteratively computed on the elements of an array.
To this goal, STEL includes some iterator meta-functions:
reduction, scan, and pairscan, that have a similar simple syntax
and behavior, and that can be applied only to the STEL predefined
operators, and the more general and complex iter

(note that several references are made here to the contents of How
to operate with arrays).

The reduction meta-function

For any dyadic operator f and any n>0-order array a, the
expression f/a can be computed, where / is called the reduction
meta-function.

In the case a is a vector, the result is the scalar

f(f(a[0],a[1]),a[2])...
(e.g., +/[1:4] equals to ((1+2)+3)+4, i.e., summation)
(e.g., */[1:4] equals to ((1*2)*3)*4, i.e., factorial product).

In the case of a higher order array, the operator is iteratively
computed along its last dimension, so that in the case of a matrix
the result is
f(f(a[[],0],a[[],1]),a[[],2])...
(e.g., +/[[1,2],[3,4],[5,6]] equals to [1+2,3+4,5+6], i.e.
[3,7,11])
(e.g., -/[[1,2,3],[4,5,6]] equals to [(1-2)-3,(4-5)-6], i.e.
[-4,-7]).

For the same reason, if a is a matrix then +/+/a is the sum of all its
elements.

Hence, if a is n-order [s0,...,sn-2,sn-1]array, then f/a is a n-1-
order [s0,...,sn-2]array.

The reduction meta-function:

• if applied to an empty n-order array, a scalar or an array
whose last dimension has size 1, returns an empty n-1-order
array.

The scan meta-function

For any dyadic operator f and any n>0-order array a, the
expression f\a can be computed, where \ is called the scan meta-
function.

In the case a is a vector, the result is the vector
[a[0],f(a[0],a[1]),f(f(a[0],a[1]),a[2]),...]
(e.g., +\[1:4] equals to [1,1+2,(1+2)+3,((1+2)+3)+4]).

STGraph how-tos How to operate with iterator meta-functions

Hence, if a is n-order [s0,...,sn-2,sn-1]array, then f\a is a n-order
[s0,...,sn-2,sn-1]array.

The scan meta-function:

• if applied to an empty n-order array, returns an empty n-
order array;

• if applied to a scalar or an array whose last dimension has
size 1, returns the array itself.

The pairscan meta-function

For any dyadic operator f and any n>0-order array a, the
expression f|a can be computed, where | is called the pairscan
meta-function.

In the case a is a vector, the result is the vector
[f(a[0],a[1]),f(a[1],a[2]),f(a[2],a[3]),...]
(e.g., +|[1:4] equals to [1+2,2+3,3+4]).

Hence, if a is n-order [s0,...,sn-2,sn-1]array, then f|a is a n-order
[s0,...,sn-2,sn-1-1]array.

The pairscan meta-function:

• if applied to an empty n-order array, a scalar or an array
whose last dimension has size 1, returns an empty n-order
array.

The iter meta-function

Some computation can be iteratively performed on any n>0-order
array a by means of the meta-function iter(a,e,z), where e is an
expression to be iteratively computed and z is the “zero” element

for such expression. The computation of e is repeated @a times. e
can contain some system-defined variables, whose value in each
iteration is set as follows:

• in each step the variable $i is set to the step index;

• the variable $0 is initially set to z and in each step is set to
the result obtained in computing e;

• in each step the variable $1 is set to the element of the array
a whose index is $i,

so that, in particular, if a is a vector, iter(a,$0,z)==z (“null
iteration”) and iter(a,$1,z)==a[@a-1] (“memoryless iteration”).
Moreover, iter(a,$0#$1,[])==a.

Together with the dyadic function max, the meta-function iter can
be used, for example, to find the maximum in the elements of a
vector v as iter(v,max($0,$1),0), under the assumption that all
elements are non-negative, so that 0 is a proper “zero” element for
the expression max($0,$1).

To see how iter operates, let us assume that v is the [3]vector
[1,4,2]. The execution trace of iter(v,max($0,$1),0) is then
as follows:

• step 0: result ← $0 ← 0 (the “zero” element);

• step 1: $0 ← result; $i ← 0; $1 ← v[$i];
result ← max($0,$1) (i.e., result ← 1 ← max(0,1));

• step 2: $0 ← result; $i ← 1; $1 ← v[$i];
result ← max($0,$1) (i.e., result ← 4 ← max(1,4));

• step 2: $0 ← result; $i ← 2; $1 ← v[$i];
result ← max($0,$1) (i.e., result ← 4 ← max(4,2)).

STGraph how-tos How to operate with iterator meta-functions

Hence, iter(v,max($0,$1),0) actually computes
max(max(max(0,1),4),2).

Because of the polymorphism of the function max, the same logic
can be applied to higher order arrays, so that, for example,
iter([[3,5],[4,2]],max($0,$1),[0,0]) returns [5,4].

It can be demonstrated that iter generalizes the reduction, scan,
and pairscan meta-functions; under the simplifying hypothesis that
by means of iter a function f is computed on a vector v, being z
the “zero” element of f:

• f/v == iter(v,f($0,$1),z);

• f\v == array(@v,if($i0==0,v[0],iter(v[[0:$i0]],
f($0,$1),z)));

• f|v == iter(v[[0:@v-2]],$0#(v[$i]+v[$i+1]),[]).

Note that also:

• f\v == iter(x,$0#if($i==0,v[0],iter(v[[0:$i]],
f($0,$1),z)),[])

showing that iter calls can be nested.

Some examples

For any vector a, (+/a)/@a returns the average value of the
elements of a.

For any vector a whose average value is m, sqrt((+/(a-m)^2)/
(@a-1) returns the sample standard deviation of the elements of a.

For any n>0-order array a, resize(x,[*/@a]) generates a
linearized, vector version of a.

For any pair of vectors a and b with the same size, +/(a*b) returns
the inner (scalar) product of a and b.

For any vector a and any scalar b, +/(a==b) returns the number of
elements of a that are equals to b.

For any vector a, iter(a,$1#$0,[]) returns the reversed version
of a.

For any vector a, iter(a,if($1!=0,$0#$1,$0),[]) returns a
version of a in which all 0s are removed.

For any vector a, iter(a,$0#$1#0,[]) returns a version of a
whose elements are interleaved with 0s.

For any pair of matrices a and b that can be multiplied with each
other, array([get(@a,0),get(@b,1)],+/(a[$i0]*b[[],$i1]))
is their vector product.

STGraph how-tos How to operate with submodels

How to operate with submodels

Introduction

Whenever a model grows in complexity, the number of nodes and
arrows of its graph can become hard to manage. Each model can
be included in a graph as a single node, being thus dealt with as a
submodel of the including supermodel. As several instances of the
same model can be included in the supermodel, and each of them
can be independently characterized in its behavior, this option
introduces a simple object-oriented management of models.

Creating and using a submodel

Each model can be included as a model node in a graph, so that
the resulting model can be structured in a hierarchy of a
supermodel, that can contain some submodels, that can contain
sub-submodels, and so on.

The only constraint for a model to be used as a submodel is that
the *.stg files of both the contained model and the container model
must be stored in the same directory: in this way, the files can be
freely moved to a different directory and possibly a different
computer.

Let us suppose that the model operations.stg has been created as
follows:

in1: value = 0
in2: value = 0
sel: value = 0
out: value = if(sel,in1+in2,in1-in2)

This is going to be used as a submodel for a model created and
then saved in the same directory as operations.stg.

In the empty supermodel, let us introduce a model node ([Insert
| Insert Model Node]):

and set its associated submodel by double clicking on the node:

STGraph how-tos How to operate with submodels

(note that the list of candidate models is simply that of all models
stored in the directory of the current model).

After having renamed the node, this is the result:

showing that STGraph has recognized operations.stg as a correct
(continuous contour) algebraic (elliptical shape instead of
roundangle, as it were have been in the case operations.stg
contains one or more state nodes) submodel.

Now the node mysubmodel wraps the whole submodel stored in
operations.stg: the inputs to mysubmodel are the submodel inputs,
and the outputs from mysubmodel are the submodel outputs:

• submodel inputs can be set in the property window of the
model node, that is in fact updated dynamically with the list
of the submodel inputs:

each input can be set, as usual, by specifying an expression
that possibly references the variables that are visible to the
model node (because an arrow has been drawn from them
to the model node or they have been set as global), but it
can also be left blank: in this case, the value specified in the
submodel is maintained as a default;

• submodel outputs can be obtained by linking one or more
nodes from the model node:

because of the arrow linking them from the model node,
such nodes can access the submodel output variables with
the usual object-oriented syntax model_node.output_var:

STGraph how-tos How to operate with submodels

Documenting a submodel

To make a model more suitably usable as a submodel, it can be
properly documented.

First of all, the name of each submodel input variable the model
node property window displays the value of the Name custom
property (see How to operate with custom properties), that can be
then specified so to make it better understandable the variable role
in the model. Furthermore, a Documentation text can be set for its
input and output variables, as explained in How to document a
model.

If, for example, the following description is set for the variable in1:

then when the model node property window is opened and the
mouse pointer is moved on the variable name the corresponding
text is displayed in the help area of the window:

Analogously, if a submodel variable is selected in the property
window of the nodes linked from the model node, the help area of
the window will display its documentation text:

STGraph how-tos How to define a new function

How to define a new function

Introduction

STEL enables the user to define new functions by means of two
complementary techniques: in graph nodes, so that the function
scope is the model, or in external XML files, so that functions are
visible to all models.

Functions defined in graph nodes

Each node whose names starts with an ‘_’ (underscore) is assumed
being of algebraic type and having an expression:

function(e)

where e is the expression defining the function, whose name is the
node name itself.

The arguments of the defined function are not declared, and are
directly referred in the expression as $a0, $a1, … (currently up to
$a3).

For example, if the expression of the node _x is:

function(($a0+$a1)/2)

then the evaluation of _x(2,3) produces the result (2+3)/2).

Furthermore, the expression e can contain the system variable
$numArgs, that is set to the number of arguments currently passed
to the function.

The meta-function function(e) allows recursive definitions. For
example, the factorial product function can be defined in a node

named _fact as follows:

function(if($a0==0,1,$a0*_fact($a0-1)))

so that calling, e.g., _fact(4) produces as result 24.

Functions defined in XML files

The directory ./fun_lib, where ‘.’ is the STGraph installation
directory, can contain one or more XML files with extension ‘stf’.
Each of them is aimed at containing the definition of one or more
new functions.

Each *.stf file has the following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM
"http://java.sun.com/dtd/properties.dtd">
<properties>
<entry key="...">...</entry>
<entry key="...">...</entry>
...
</properties>

Each item <entry> contains the definition of a new function
according to the syntax:

<entry key="menu_and_function_name">
function_definition
// <![CDATA[
function_documentation
]]>
</entry>

where:

• menu_and_function_name contains the multilingual

STGraph how-tos How to define a new function

definition of the menu name in which the function will be
included and the function name

(e.g.,

<entry key="en:Mathematical functions__
it:Funzioni matematiche|abs">
)

where ‘|’ is the separator menu names – function name, ‘__’
(double underscore) is the separator between language-
dependent versions of menu name, in which ‘:’ is the
separator language ISO code – menu name;
hence the previous example is related to the definition of the
function abs, that will be included in the English menu
“Mathematical functions” and in the Italian menu “Funzioni
matematiche”;

• function_definition contains the expression defining the
new function

(e.g.,

if($numArgs!=1,
"en:One argument is required__
it:E' richiesto un argomento",
if($a0>=0,$a0,-$a0)
)
)

everything has been stated in the previous Section
“Functions defined in graph nodes”, applies also in this case,
with the exceptions listed below;

• function_documentation contains the multilingual
documentation for the defined function

(e.g.,

en:<code>abs(x)</code>: absolute value of
<code>x</code>__
it:<code>abs(x)</code>: valore assoluto di
<code>x</code>
)

written with the same syntax as the menu names and
possibly including HTML tags.

With respect to the functions defined in graph nodes, the functions
defined in *.stf files:

• are not identified by the meta-function function();

• can contain multilingual error messages as strings written
with the same syntax as the menu names;

• can include multiple expressions, separated by ‘;’
(semicolon); if n>1 expressions are present, the first n-1
expressions are evaluated in order, and the value of the ith
expression is stored in the system variable $vi; finally, the
last expression, that can contain the reference to the
variables $vi, is evaluated and its result is returned as the
function value; note that the scope of the variables $vi is
local to the function.

The following is an example showing all these features (note that
the indentation is optional).

<entry key="en:Array functions__
it:Funzioni array|lastDim">
order($a0);
if($numArgs!=1,
 "en:One argument is required__
 it:E' richiesto un argomento",

STGraph how-tos How to define a new function

$v0==0,
 "en:The argument cannot be a scalar__
 it:L'argomento non puo' essere uno scalare",
$v0==1,
 @$a0,
 get(@$a0,$v0-1)
) // <![CDATA[
en:<code>lastDim(x)</code>: number of elements in the
last (fastest) dimension of the array <code>x</code>__

it:<code>lastDim(x)</code>: numero degli elementi
nell'ultima dimensione dell'array <code>x</code>
]]>
</entry>

STGraph how-tos How to operate with Property Changer

How to operate with Property Changer

Introduction

As the number of nodes in a model increases, their efficient
management becomes a critical requirement. Some tasks can be
automated by means of the Property Changer tool ([Tools |
Property Changer]), that takes statements of the general form:

select condition do action

(note that single spaces are used as token separators, and item are
case sensitive) and executes them on the current model, by
selecting the nodes that satisfy condition and performing action
on them.

Specifications for conditions

The recognized conditions are:

• all: select all nodes;

• current: maintain the current selection;

• name=expr: select all nodes whose name matches expr,
which can start or end with the wild char '*';

• forecol=expr: select all nodes whose foreground color is
expr;

• backcol=expr: select all nodes whose foreground color is
expr;

• cprop=expr: select all nodes whose custom property of

name cprop has value expr.

Specifications for actions

The recognized action are:

• nothing: do nothing;

• forecol=expr: set foreground color to expr;

• backcol=expr: set background color to expr;

• cprop=expr: set custom property of name cprop to value
expr.

Examples

select all do nothing: select all nodes;

select name=out* do OutputType=2: select all nodes whose
name starts with “out” and set their custom property named
“OutputType” to 2;

select forecol=green do backcol=yellow: select all nodes
whose foreground color is green and set their background color to
yellow.

STGraph how-tos How to generate models for the web

How to generate models for the web

Introduction

STGraph is the tool to generate models that can be played on the
web by means of the STGraphWeb server system. To this aim, not
only a model must be correct, but some further constraints must be
forced and some further information must be added to document
the semantics of the model itself.

The following constraints are checked by [Analyze | Check
Model for Web...].

General rules

• time steps must range from 0 to the last round with timeD =
1;

• the interrupts and save simulation data model options
must be switched off;

• general / market data are in scalar nodes, under the
hypothesis that they are the same for all the teams;

• player data (both inputs / decisions and outputs / results) are
in vector nodes: each player is associated to an element of
the vector;

• each player is assumed to be identified by the corresponding
vector index (from 0);

• to make them observable, both input and output nodes must
have the switches output and keep series if vector
turned on;

• each initial value of a state node must be set via an input
node;

• a constant (input) node called Group stores information on
application-specific groups, through its custom properties 1
= description for group 1, 2 = description for
group 2, and so on; both input and output nodes must have
a custom property Group, with value either 1, or 2, ... to
express that that node belongs to group 1, 2, ...

Node type identification

• only input nodes and output nodes are exposed to the web
app;

• input nodes must have a custom property InputType,
whose possible values are described below;

• input nodes with InputType < 6 must have the custom
properties DefaultValue, Decimals, and Group;

• output nodes must have a custom property OutputType,
whose possible values are described below;

• output nodes must have the custom properties Decimals
and Group;

• data dictionary includes input nodes with InputType = 3
("Decisions");

• data dictionary includes output nodes with OutputType = 2
or 3 ("Results"), and = 4 or 5 ("Market data"), and = 6
("Target variable").

STGraph how-tos How to generate models for the web

Input types

• InputType = 0: initial value of a state node: it must be
vector;

• InputType = 1: exogenous, team number independent,
input: it must be scalar;

• InputType = 2: exogenous, team number dependent: it
must be scalar (i.e., value to be multiplied by the number of
teams);

• InputType = 3: player decision: it must be vector;

• InputType = 6: constant parameters to be displayed to the
players;

• InputType = 7: constant parameters not to be displayed to
the players (typically for utility nodes, such as Group and
custom functions).

Output types

• OutputType = 0: variable visible to administrators only (not
to players);

• OutputType = 1: player decision (corresponding to
InputType = 3);

• OutputType = 2: player result;

• OutputType = 3: player result that should not visualized if
zero;

• OutputType = 4: general / market data;

• OutputType = 5: general / market data that should not
visualized if zero;

• OutputType = 6: overall ("goal") variable for ranking
players.

	How to create a basic model
	Introduction
	A step-by-step procedure

	How to document a model
	Introduction
	Model documentation
	Node documentation

	How to operate with custom properties
	Introduction
	General properties
	Properties related to interrupt conditions
	Properties used in STGraphWeb

	How to operate with arrays
	Introduction
	Generating an array
	Getting the size and the order of an array
	Modifying an array
	Extracting elements / subarrays from an array
	Setting elements / subarrays of an array
	Applying functions to an array

	How to operate with the conditional function if()
	Introduction
	The conditional function

	How to operate with iterator meta-functions
	Introduction
	The reduction meta-function
	The scan meta-function
	The pairscan meta-function
	The iter meta-function
	Some examples

	How to operate with submodels
	Introduction
	Creating and using a submodel
	Documenting a submodel

	How to define a new function
	Introduction
	Functions defined in graph nodes
	Functions defined in XML files

	How to operate with Property Changer
	Introduction
	Specifications for conditions
	Specifications for actions
	Examples

	How to generate models for the web
	Introduction
	General rules
	Node type identification
	Input types
	Output types

