
-

-

-

-

-

-

-

-

-

-

STGraph - System defined functions
[Version 19.2.12]

Legend: A=array (or specifically: S=scalar; V=vector; M=matrix); E=expression

Operators

Mathematical functions

Statistical functions

Control functions

Array functions

See also:

Monadic polymorphic functions / operators

Diadic polymorphic functions / operators

Boolean operators

Polymorphic functions handling statistical distributions

Interpolation functions

#op
#mat
#stat
#control
#vector
#monadic
#diadic
#boolean
#distrib
#interp

Operators

x+y [x,y:A] x plus y

x&&y [x,y:A] logical conjunction: x and y

x#y [x,y:A] x concatenated with y

x##y [x:S, y:A; x:A, y:S] array obtained by removing the first x elements from each vector in the last

dimension of the array y or the last y elements from each vector in the last dimension of the array x

{x} [x:E] subexpression that is assigned the variable $wn, where n ranges from 0 to 3 according to the order

of evaluation

x-y [x,y:A] x minus y

x==y [x,y:A] logical comparison: is x equal to y?

x>=y [x,y:A] logical comparison: is x greater than or equal to y?

x>y [x,y:A] logical comparison: is x greater than y?

x<=y [x,y:A] logical comparison: is x less than or equal to y?

[x:y] [x,y:S] vector of scalars from x to y

[x:y:z] [x,y,z:S] vector of scalars from x to y separated by z

x<y [x,y:A] logical comparison: is x less than y?

-x [x:A] minus x

x%y [x,y:A] x modulus y

x!=y [x,y:A] logical comparison: is x different from y?

!x [x:A] logical negation: not x

x||y [x,y:A] logical disjunction: x or y

f|x [f:function; x:A] if x is a vector, vector whose first element is obtained by applying the dyadic function /

operator f to the first two elements of x, the second element is obtained by applying f to the the second

and the third element, and so on; if x is a higher order array, array obtained in the same way by applying f

in parallel to the elements of each vector of the last dimension

f|[n]x [f:function; x:A; n:integer] as f|x, where f is applied to the dimension n of x

x^y [x,y:A] x to the power of y

x*y [x,y:A] x times y

x/y [x,y:A] x divided by y

f/x [f:function; x:A] if x is a vector, scalar obtained by applying the dyadic function / operator f to the first

two elements of x, then to the result and the third element, and so on; if x is a [n]order array, [n-1]order

array obtained in the same way by applying f in parallel to the elements of each vector of the last

dimension

f/[n]x [f:function; x:A; n:integer] as f/x, where f is applied to the dimension n of x

f\x [f:function; x:A] if x is a vector, vector whose first element is obtained by applying the dyadic function /

operator f to the first two elements of x, the second element is obtained by applying f to the result and the

third element, and so on; if x is a higher order array, array obtained in the same way by applying f in

parallel to the elements of each vector of the last dimension

f\[n]x [f:function; x:A; n:integer] as f\x, where f is applied to the dimension n of x

Mathematical functions

acos(x) [x:A] arccosine of x

asin(x) [x:A] arcsine of x

atan(x) [x:A] arctangent of x

#opAddition
#opAnd
#opConc
#opDec
#opDefExpr
#opDifference
#opEq
#opGE
#opGT
#opLE
#opGenVect1
#opGenVect2
#opLT
#opMinus
#opMod
#opNE
#opNot
#opOr
#opPairScan-1
#opPairScan-1
#opPower
#opProduct
#opQuotient
#opReduction-1
#opReduction-1
#opScan-1
#opScan-1
#acos
#asin
#atan

bline(vx,vy,x) [vx,vy:V, x:A] the y value corresponding to x over the segment from (vx[0],vy[0]) to

(vx[1],vy[1]), and constant elsewhere

cos(x) [x:A] cosine of x

deg2rad(x) [x:A] value of x converted from degrees to radians

exp(x) [x:A] exponential of x, i.e., e to the power of x

FFT(x,s) [x:V,M; s:S] if s==1, fast Fourier transform of the vector x; if s==2, inverse fast Fourier transform of

the matrix x

int(x) [x:A] integer part of x

integral(x) [x:A] in state transitions of state nodes, iterative sum of x, according to the chosen integration

algorithm

line(vx,vy,x) [vx,vy:V, x:A] the y value corresponding to x over the straight line crossing the points

vx[0],vy[0] and vx[1],vy[1]

log(x) [x:A] natural logarithm of x

log(x,y) [x,y:A] logarithm of x to the base y

max(x,y) [x,y:A] maximum between x and y

min(x,y) [x,y:A] minimum between x and y

mod(x,y) [x,y:A] x modulus y

pline(vx,vy,x) [vx,vy:V, x:A] the y value corresponding to x over the polyline whose vertices are in the

vectors vx and vy

rad2deg(x) [x:A] value of x converted from radians to degrees

round(x,y) [x,y:A] x rounded to y decimals

sigmoid(vx,vy,x) [vx,vy:V, x:A] the y value corresponding to x over the sigmoid controlled by the points

vx[0],vy[0] and vx[1],vy[1]

sign(x) [x:A] sign of x, i.e., 1 if x > 0, -1 if x < 0, 0 if x == 0

sin(x) [x:A] sine of x

spline(vx,vy,x) [vx,vy:V, x:A] the y value corresponding to x over the spline whose node points are in the

vectors vx and vy

sqrt(x) [x:A] square root of x

tan(x) [x:A] tangent of x

wrap(x,y) [x,y:A] x modulus y also dealing with negative values

Statistical functions

chiSquare(v,x,s) [v:V; x:A; s:S] chi square probability distribution of parameters v=[p1], where p1=degrees

of freedom (default value: 5): if x and s are not specified, random number extracted from the distribution; if

s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at the probability x

exponential(v,x,s) [v:V; x:A; s:S] exponential probability distribution of parameters v=[p1], where p1

=lambda (p1>0; default value: 1): random number extracted from the distribution if x and s are not

specified; value of the pdf, if s==0 or the cdf, if s==1, at the point x

gamma(v,x,s) [v:V; x:A; s:S] gamma probability distribution of parameters v=[p1,p2], where p1=alpha

(default value: 1), p2=beta (default value: 1): if x and s are not specified, random number extracted from the

distribution; if s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at the

probability x

gaussian(v,x,s) [v:V; x:A; s:S] gaussian probability distribution of parameters v=[p1,p2], where p1=mean

(default value: 0), p2=stddev (default value: 1): if x and s are not specified, random number extracted from

the distribution; if s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at

#bline
#cos
#deg2rad
#exp
#FFT
#int
#integral
#line
#log-1
#log-1
#max
#min
#mod
#pline
#rad2deg
#round
#sigmoid
#sign
#sin
#spline
#sqrt
#tan
#wrap
#chiSquare
#exponential
#gamma
#gaussian

the probability x

poisson(v,x,s) [v:V; x:A; s:S] Poisson probability distribution of parameters v=[p1], where p1=mean (p1>0;

default value: 5): random number extracted from the distribution if x and s are not specified; value of the

pdf, if s==0 or the cdf, if s==1, at the point x

rand() [x,y:S] random number extracted from a uniform distribution between 0 and 1, or between 0 and x if

only x is specified, or between x and y if both are specified

randInt(x) [x:A] integer random number extracted from a uniform distribution between 0 and int(x-1)

tDistribution(v,x,s) [v:V; x:A; s:S] t-distribution probability distribution of parameters v=[p1], where p1

=degrees of freedom (p1>0; default value: 5): random number extracted from the distribution if x and s are

not specified; value of the pdf, if s==0 or the cdf, if s==1, at the point x

uniform(v,x,s) [v:V; x:A; s:S] uniform (rectangular) probability distribution of parameters v=[p1,p2], where

p1=mean (default value: 0), p2=stddev (default value: 1): if x and s are not specified, random number

extracted from the distribution; if s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2,

inverse cdf value at the probability x

Control functions

function(x) [x:E] new function, named as the node in which it is used (the node name must start with an

underscore) and defined by the expression x

getCProp(n,x) [n:node name; x:string] value of the custom property named x, either of the node n or of the

current node if n is not specified

getPhases() [] vector of phases as specified in the "Phase" custom property

if(c1,x1,c2,x2,...,cn,xn,xn+1) [c1,...,cn:A; v1,...,vn+1:A] conditional structure: return x1 if c1 is true, else x2 if

c2 is true, else ..., and xn+1 otherwise

isNumber(x) [x:A] true if x is a number (i.e., is neither NaN nor Infinity), false otherwise

iter(x,e,z) [x:A; e:E; z:A] value obtained by repeatedly applying the expression e (possibly including

functions of the form fun($0,$1) or $0op$1), whose identity element is z, to the elements of the vector x

or to the elements of each vector of the last dimension of the higher dimension array x

readFromXLS(x,y,r,c) [x:string; y,r,c:S] value read from the row r and column c of the sheet of index y of

the xls workbook whose filename is x

readFromXLS(x,y,r1,c1,r2,c2) [x:string; y,r1,c1,r2,c2:S] vector or matrix read from the row r1, column c1

and the row r2, column c2 of the sheet of index y of the xls workbook whose filename is x

sysTime() [] number of milliseconds from the simulation start

Array functions

array(v,e) [v:V, e:E] array whose size is v and whose elements are specified by the expression e, that can

contain the system variables $i0,...,$i5, each of them set to the value of the corresponding dimension

conc(x,y,n) [x,y:A, n:integer] x concatenated with y along the dimension n if specified or the last dimension

otherwise

dec(x,y,n) [x:S, y:A; x:A, y:S, n:integer] array obtained by removing the first x elements from each vector

along the dimension n if specified, or the last dimension otherwise, of the array y or the last y elements

from each vector along the dimension n if specified, or the last dimension otherwise, of the array x

get(x,v0,v1,...) [x:A; v0,v1,...:V] array obtained from the array x by extracting its subarray of indexes v0 from

the 0-th dimension, then its subarray of indexes v1 from the 1-st dimension, then... (equivalent to

x[v0,v1,...])

#poisson
#rand
#randInt
#tDistribution
#uniform
#function
#getCProp
#getPhases
#if
#isNumber
#iter
#readFromXLS-1
#readFromXLS-1
#sysTime
#array
#conc
#dec
#get

getData(x,y) [x,y:A] vector of the elements of the array y identified by the indexes in the vector x if y is a

vector or by the indexes in the matrix x if y is a higher order array

getIndex(s,x) [s:S, x:A] if x is a vector, vector of the indexes of the occurrences of s in x; if x is a higher

order array, matrix of the indexes of the occurrences of s in x

histogram(x,d,c) [x:S; d,c:V] vector containing the distribution of the data in d categorized by the values in c

; if x is specified it is supposed that d already contains the distribution, to which x is added

@x [x:A] size of x

order(x) [x:A] order, i.e., number of dimensions, of the array x

remove(x,v) [x:A; v:S,V] array obtained by removing the v-th element(s) from the first dimension of the

array x

resize(x,v) [x:A; v:V] array obtained by resizing the array x to the size v, and by trimming the exceeding

trailing elements or padding with trailing zeros if required

set(x,v0,v1,...,y) [x:A; v0,v1,...:V; y:A] array obtained from the array x by substituting its subarray of indexes

v0 from the 0-th dimension, of indexes v1 from the 1-st dimension, ... with the array y0

shift(x,y) [x,y:A] array obtained by concatenating the array y to the array x at the left and removing the

same number of elements from x at the right

shuffle(x) [x:A] array obtained by randomly permutating the elements of the array x

size(x) [x:A] size of x

sort(x,s) [x:A; s:S] array obtained by sorting the elements of the array x, either in direct order, if s==0 or it is

not specified, or in reverse order, if s==1

transpose(x) [x:A] array obtained by transposing the array x

#getData
#getIndex
#histogram
#opSize
#order
#remove
#resize
#set
#shift
#shuffle
#size
#sort
#transpose

STGraph - Functions listed by functional categories
STGraph - Monadic polymorphic functions / operators

Each of the following functions / operators has a single argument, which are arrays, and therefore in

particular scalars (0-order arrays), vectors (1-order arrays), or matrices (2-order arrays), and behaves

polymorphically.
Given f(x):
- if x is an empty n>0-order array, the result is x itself
- if x is a scalar, the result is a scalar
- if x is a n>0-order array, the result is a n>0-order array y such that

y[i1,...in]=[f(x[i1]),...,f(x[i1])]

acos(x)

asin(x)

atan(x)

cos(x)

deg2rad(x)

exp(x)

int(x)

isNumber(x)

log(x)

-x

!x

rad2deg(x)

randInt(x)

sign(x)

sin(x)

sqrt(x)

tan(x)

STGraph - Diadic polymorphic functions / operators

Each of the following functions / operators has two arguments, which are arrays, and therefore in particular

scalars (0-order arrays), vectors (1-order arrays), or matrices (2-order arrays), and behaves

polymorphically.
Given f(x1,x2):
- if x1 or x2 is an empty n>0-order array, the result is 0.0
- if x1 and x2 are scalars, the result is a scalar
- if x1 is a scalar and x2 is a n>0-order array, the result is a n-order array y such that

y[i1,...in]=f(x1,x2[i1,...in]) (or viceversa)
- if x1 and x2 are n>0-order arrays of the same dimensions, the result is a n-order array y such that

y[i1,...in]=f(x1[i1,...in],x2[i1,...in])
- if x1 is a n>1-order array and x2 is a n-1-order array, and their first n-1 dimensions are the same, the

result is a n-order array y such that y[i1,...in]=f(x1[i1,...in],x2[i1,...in-1])
An exception is thrown in the other cases.

#acos
#asin
#atan
#cos
#deg2rad
#exp
#int
#isNumber
#log-1
#opMinus
#opNot
#rad2deg
#randInt
#sign
#sin
#sqrt
#tan

log(x,y)

max(x,y)

min(x,y)

mod(x,y)

x+y

x&&y

x-y

x==y

x>=y

x>y

x<=y

x<y

x%y

x!=y

x||y

x^y

x*y

x/y

round(x,y)

wrap(x,y)

STGraph - Boolean operators

Each of the following operators deals with with the true and false boolean values, which are defined in

STGraph as follows:
- each value greater than zero (actually: greater or equal to EPSILON) is evaluated as true;
- each value less or equal than zero (actually: less to EPSILON) is evaluated as false.
The only primitive type in STGraph is double: hence, true and false are implemented as 1.0 and 0.0

respectively.

x&&y

x==y

x>=y

x>y

x<=y

x<y

x!=y

!x

x||y

STGraph - Polymorphic functions handling statistical distributions

Each of the following functions can be called for either generating a random number extracted from the

given statistical distribution, or returning the y values of either the probability density function (PDF), or the

#log-2
#max
#min
#mod
#opAddition
#opAnd
#opDifference
#opEq
#opGE
#opGT
#opLE
#opLT
#opMod
#opNE
#opOr
#opPower
#opProduct
#opQuotient
#round
#wrap
#opAnd
#opEq
#opGE
#opGT
#opLE
#opLT
#opNE
#opNot
#opOr

cumulative density function (CDF), or the inverse cumulative density function for the given x values.
Provided that the parameters characterizing the distribution f are stored in the vector v (e.g., in the case of

the gaussian distribution v=[mean,stddev]), then the following usages are allowed:
- f() returns a random number extracted from the distribution with default parameters
- f(v) returns a random number extracted from the distribution whose parameters are in the vector v
- f(v,x,0) returns the PDF values of the distribution whose parameters are in the vector v and for the

arguments in the array x
- f(v,x,1) returns the CDF values of the distribution whose parameters are in the vector v and for the

arguments in the array x
- f(v,x,2) returns the inverse CDF values of the distribution whose parameters are in the vector v and for

the arguments in the array x, in the range [0,1] (or (0,1)).
The algorithmic relations between PDFs and CDFs are as follows:
- the CDF is approximated by (+\pdf)*deltax, where pdf is the vector of the PDF values and deltax is

the step of the domain values;
- the PDF is approximated by (-|-cdf)/deltax, where cdf is the vector of the CDF values and deltax is

as before.

chiSquare(v,x,s)

exponential(v,x,s)

gamma(v,x,s)

gaussian(v,x,s)

poisson(v,x,s)

tDistribution(v,x,s)

uniform(v,x,s)

STGraph - Interpolation functions

Each of the following functions generates an interpolation value according to the same logic:
- two vectors vx and vy are specified, as control points defining the interpolating curve
- an array of x values is specified, whose corresponding y values on the curve are computed by the

function.

bline(vx,vy,x)

line(vx,vy,x)

pline(vx,vy,x)

sigmoid(vx,vy,x)

spline(vx,vy,x)

#chiSquare
#exponential
#gamma
#gaussian
#poisson
#tDistribution
#uniform
#bline
#line
#pline
#sigmoid
#spline

STGraph - Functions
acos
Format: acos(x)

Constraints: x is an array

Description: arccosine of x

x is expressed in radians.

acos is a mathematical function

acos is a monadic polymorphic function

Exceptions: no

array
Format: array(v,e)

Constraints: v is a scalar or a vector; e is an expression

Description: array whose size is v and whose elements are specified by the expression e, that can contain

the system variables $i0,...,$i5, each of them set to the value of the corresponding dimension

array is an array function

Exceptions: no

asin
Format: asin(x)

Constraints: x is an array

Description: arcsine of x

x is expressed in radians.

asin is a mathematical function

asin is a monadic polymorphic function

Exceptions: no

atan
Format: atan(x)

Constraints: x is an array

#mat
#monadic
#vector
#mat
#monadic

Description: arctangent of x

x is expressed in radians.

atan is a mathematical function

atan is a monadic polymorphic function

Exceptions: no

bline
Format: bline(vx,vy,x)

Constraints: vx and vy are vectors; x is an array

Description: the y value corresponding to x over the segment from (vx[0],vy[0]) to (vx[1],vy[1]),

and constant elsewhere

bline is a mathematical function

bline is an interpolation function

Exceptions: Both vx and vy must have two elements; vx[0] must be less than vx[1].

chiSquare
Format: chiSquare(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0, or 1, or 2

Description: chi square probability distribution of parameters v=[p1], where p1=degrees of freedom

(default value: 5): if x and s are not specified, random number extracted from the distribution; if s==0, pdf

value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at the probability x

chiSquare is a statistical function

chiSquare is a statistical distribution function

Exceptions: s must be either 0, 1, or 2; if s==2 then all elements of x must be in the interval [0,1].

conc
Format: conc(x,y,n)

Constraints: x and y are arrays, n (optional) is an integer

Description: x concatenated with y along the dimension n if specified or the last dimension otherwise

If n is omitted it is equivalent to the operator x#y.

#mat
#monadic
#mat
#interp
#stat
#distrib

conc is an array function

Exceptions: It must be possible to concatenate x with y in terms of their dimensions; n must be a correct

dimension for x, currently 0 or 1.

cos
Format: cos(x)

Constraints: x is an array

Description: cosine of x

x is expressed in radians.

cos is a mathematical function

cos is a monadic polymorphic function

Exceptions: no

dec
Format: dec(x,y,n)

Constraints: x is a scalar and y an array, or viceversa, n (optional) is an integer

Description: array obtained by removing the first x elements from each vector along the dimension n if

specified, or the last dimension otherwise, of the array y or the last y elements from each vector along the

dimension n if specified, or the last dimension otherwise, of the array x

If n is omitted it is equivalent to the operator x##y.

dec is an array function

Exceptions: n must be a correct dimension for x, currently 0 or 1.

deg2rad
Format: deg2rad(x)

Constraints: x is an array

Description: value of x converted from degrees to radians

deg2rad is a mathematical function

deg2rad is a monadic polymorphic function

#vector
#mat
#monadic
#vector
#mat
#monadic

Exceptions: no

exp
Format: exp(x)

Constraints: x is an array

Description: exponential of x, i.e., e to the power of x

exp is a mathematical function

exp is a monadic polymorphic function

Exceptions: no

exponential
Format: exponential(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0 or 1

Description: exponential probability distribution of parameters v=[p1], where p1=lambda (p1>0; default

value: 1): random number extracted from the distribution if x and s are not specified; value of the pdf, if

s==0 or the cdf, if s==1, at the point x

exponential is a statistical function

exponential is a statistical distribution function

Exceptions: All elements of x must be strictly positive; s must be either 0 or 1

FFT
Format: FFT(x,s)

Constraints: s is a scalar, either 1 or 2; x is a vector if x==1, and a matrix if x==2

Description: if s==1, fast Fourier transform of the vector x; if s==2, inverse fast Fourier transform of the

matrix x

If FFT is computed, it takes a vector and returns a size(x) x 2 matrix, to be interpreted as a vector of

complex numbers. If inverse FFT is computed, it takes a 2 column matrix, to be interpreted as a vector of

complex numbers, and returns a vector.

FFT is a mathematical function

#mat
#monadic
#stat
#distrib
#mat

Exceptions: If FFT is computed, the size of x must be a power of 2. If inverse FFT is computed, the row

number of x must be a power of 2 and its column number must be 2.

function
Format: function(x)

Constraints: x is an expression

Description: new function, named as the node in which it is used (the node name must start with an

underscore) and defined by the expression x

The arguments of the defined function are referred to in the expression as $a0, $a1, ... (up to $a3).

For example, if the expression of the node _x is function(($a0+$a1)/2) then _x(2,3) produces the

result (2+3)/2=2.5.

Furthermore, such expression can contain the system variable $numArgs, that is set to the number of

arguments to the function.

Note that the (meta)function function allows recursive definitions. For example, the factorial product

function can be defined in a node named _fact as follows: function(if($a0==0,1,$a0*_fact($a0-

1))).

function is a control function

Exceptions: no

gamma
Format: gamma(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0, or 1, or 2

Description: gamma probability distribution of parameters v=[p1,p2], where p1=alpha (default value: 1),

p2=beta (default value: 1): if x and s are not specified, random number extracted from the distribution; if

s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at the probability x

gamma is a statistical function

gamma is a statistical distribution function

Exceptions: s must be either 0, 1, or 2; if s==2 then all elements of x must be in the interval [0,1].

gaussian
Format: gaussian(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0 or 1

#control
#stat
#distrib

Description: gaussian probability distribution of parameters v=[p1,p2], where p1=mean (default value: 0

), p2=stddev (default value: 1): if x and s are not specified, random number extracted from the distribution;

if s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at the probability

x

gaussian is a statistical function

gaussian is a statistical distribution function

Exceptions: s must be either 0, 1, or 2; if s==2 then all elements of x must be in the interval [0,1].

get
Format: get(x,v0,v1,...)

Constraints: x is an array; v1, v2, ... are scalars or vectors

Description: array obtained from the array x by extracting its subarray of indexes v0 from the 0-th

dimension, then its subarray of indexes v1 from the 1-st dimension, then... (equivalent to x[v0,v1,...])

get is an array function

Exceptions: no

getCProp
Format: getCProp(n,x)

Constraints: n (optional) is a node name; x is a string

Description: value of the custom property named x, either of the node n or of the current node if n is not

specified

Only numerical values are dealt with. If specified, n must be written without quotes.

getCProp is a control function

Exceptions: If specified, n must be the name of a connected node. x must be the name of an existing

custom property, whose value must be a number.

getData
Format: getData(x,y)

Constraints: x and y are arrays

Description: vector of the elements of the array y identified by the indexes in the vector x if y is a vector or

by the indexes in the matrix x if y is a higher order array

#stat
#distrib
#vector
#control

If no elements are not found, it returns the scalar -1.

getData is an array function

Exceptions: no

getIndex
Format: getIndex(s,x)

Constraints: s is a scalar; x is an array

Description: if x is a vector, vector of the indexes of the occurrences of s in x; if x is a higher order array,

matrix of the indexes of the occurrences of s in x

If s is not found, it returns the scalar -1.

getIndex is an array function

Exceptions: no

getPhases
Format: getPhases()

Constraints:

Description: vector of phases as specified in the "Phase" custom property

The format for the custom property is, e.g., 1,5-8.

getPhases is a control function

Exceptions: The custom property "Phase" must be defined and set as specified.

histogram
Format: histogram(x,d,c)

Constraints: x (optional) is a scalar; d and c are vectors

Description: vector containing the distribution of the data in d categorized by the values in c; if x is

specified it is supposed that d already contains the distribution, to which x is added

The elements of the vector c are the right bounds of the intervals defining the categories; the last category

is automatically added to contain the values greater than the last element of c.

histogram is an array function

#vector
#vector
#control
#vector

Exceptions: y and z must have the same size.

if
Format: if(c1,x1,c2,x2,...,cn,xn,xn+1)

Constraints: all arguments are arrays, either of the same size or of “compatible size” (see the Notes)

Description: conditional structure: return x1 if c1 is true, else x2 if c2 is true, else ..., and xn+1 otherwise

The function if operates as a chain of if ... then ... else if ... then ...

Its simplest form, if(c,v1,v2), is equivalent to the structure if c then v1 else v2.

It behaves "as polymorphically as possible": in particular, if c, v1 and v2 are arrays of the same size, the

function produces an array of that size, such that result[i1,...,in] == v1[i1,...,in] if

c[i1,...,in] is true and result[i1,...,in] == v2[i1,...,in] otherwise.

Given the general form, if(c1,v1,c2,v2,...,cn,vn,vn+1), the conditions ci must have the same size.

If they are scalars, the values vj are not constrained. Otherwise, the values vj must have the same size of

the conditions ci or must be scalars.

if is a control function

Exceptions: The number of parameters must be odd.

int
Format: int(x)

Constraints: x is an array

Description: integer part of x

int is a mathematical function

int is a monadic polymorphic function

Exceptions: no

integral
Format: integral(x)

Constraints: x is an array

Description: in state transitions of state nodes, iterative sum of x, according to the chosen integration

algorithm

In the case of the Euler algorithm, the value is this+x*timeD.

#control
#mat
#monadic

integral is a mathematical function

Exceptions: no

isNumber
Format: isNumber(x)

Constraints: x is an array

Description: true if x is a number (i.e., is neither NaN nor Infinity), false otherwise

isNumber is a control function

isNumber is a monadic polymorphic function

Exceptions: no

iter
Format: iter(x,e,z)

Constraints: x is an array; e is an expression; z is an array

Description: value obtained by repeatedly applying the expression e (possibly including functions of the

form fun($0,$1) or $0op$1), whose identity element is z, to the elements of the vector x or to the

elements of each vector of the last dimension of the higher dimension array x

iter is a control function

Exceptions: x must be non null.

line
Format: line(vx,vy,x)

Constraints: vx and vy are vectors; x is an array

Description: the y value corresponding to x over the straight line crossing the points vx[0],vy[0] and

vx[1],vy[1]

line is a mathematical function

line is an interpolation function

Exceptions: Both vx and vy must have two elements; vx[0] must be less than vx[1].

#mat
#control
#monadic
#control
#mat
#interp

log-1
Format: log(x)

Constraints: x is an array

Description: natural logarithm of x

log-1 is a mathematical function

log-1 is a monadic polymorphic function

Exceptions: x must be strictly positive.

log-2
Format: log(x,y)

Constraints: x and y are arrays (the constraints are specified here)

Description: logarithm of x to the base y

log-2 is a mathematical function

log-2 is a diadic polymorphic function

Exceptions: As specified here. Furthermore, x and y must be strictly positive.

max
Format: max(x,y)

Constraints: x and y are arrays (the constraints are specified here)

Description: maximum between x and y

max is a mathematical function

max is a diadic polymorphic function

Exceptions: As specified here.

min
Format: min(x,y)

#mat
#monadic
#mat
#diadic
#mat
#diadic

Constraints: x and y are arrays (the constraints are specified here)

Description: minimum between x and y

min is a mathematical function

min is a diadic polymorphic function

Exceptions: As specified here.

mod
Format: mod(x,y)

Constraints: x and y are arrays (the constraints are specified here)

Description: x modulus y

Equivalent to the operator x%y.

mod is a mathematical function

mod is a diadic polymorphic function

Exceptions: As specified here.

Addition
Format: x+y

Constraints: x and y are arrays (the constraints are specified here)

Description: x plus y

Addition is an operator

Addition is a diadic polymorphic function

Exceptions: As specified here.

And
Format: x&&y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical conjunction: x and y

And is an operator

And is a diadic polymorphic function, a boolean operator

#mat
#diadic
#mat
#diadic
#op
#diadic
#op
#diadic
#boolean

Exceptions: As specified here.

Conc
Format: x#y

Constraints: x and y are arrays

Description: x concatenated with y

Equivalent to the function conc(x,y). It must be possible concatenate x with y in terms of their sizes.

Conc is an operator

Exceptions: no

Dec
Format: x##y

Constraints: x is a scalar and y an array, or viceversa

Description: array obtained by removing the first x elements from each vector in the last dimension of the

array y or the last y elements from each vector in the last dimension of the array x

Equivalent to the function dec(x,y).

Dec is an operator

Exceptions: no

DefExpr
Format: {x}

Constraints: x is an expression

Description: subexpression that is assigned the variable $wn, where n ranges from 0 to 3 according to the

order of evaluation

DefExpr is an operator

Exceptions: no

#op
#op
#op

Difference
Format: x-y

Constraints: x and y are arrays (the constraints are specified here)

Description: x minus y

Difference is an operator

Difference is a diadic polymorphic function

Exceptions: As specified here.

Eq
Format: x==y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x equal to y?

Eq is an operator

Eq is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

GE
Format: x>=y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x greater than or equal to y?

GE is an operator

GE is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

GT
Format: x>y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x greater than y?

GT is an operator

#op
#diadic
#op
#diadic
#boolean
#op
#diadic
#boolean
#op

GT is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

LE
Format: x<=y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x less than or equal to y?

LE is an operator

LE is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

GenVect1
Format: [x:y]

Constraints: x and y are scalars

Description: vector of scalars from x to y

GenVect1 is an operator

Exceptions: no

GenVect2
Format: [x:y:z]

Constraints: x, y and z are scalars

Description: vector of scalars from x to y separated by z

GenVect2 is an operator

Exceptions: no

LT

#diadic
#boolean
#op
#diadic
#boolean
#op
#op

Format: x<y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x less than y?

LT is an operator

LT is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

Minus
Format: -x

Constraints: x is an array

Description: minus x

Minus is an operator

Minus is a monadic polymorphic function

Exceptions: no

Mod
Format: x%y

Constraints: x and y are arrays (the constraints are specified here)

Description: x modulus y

Equivalent to the function mod(x,y).

Mod is an operator

Mod is a diadic polymorphic function

Exceptions: As specified here.

NE
Format: x!=y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical comparison: is x different from y?

NE is an operator

#op
#diadic
#boolean
#op
#monadic
#op
#diadic
#op

NE is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

Not
Format: !x

Constraints: x is an array

Description: logical negation: not x

Not is an operator

Not is a monadic polymorphic function, a boolean operator

Exceptions: no

Or
Format: x||y

Constraints: x and y are arrays (the constraints are specified here)

Description: logical disjunction: x or y

Or is an operator

Or is a diadic polymorphic function, a boolean operator

Exceptions: As specified here.

PairScan-1
Format: f|x

Constraints: f is a function or an operator; x is an array

Description: if x is a vector, vector whose first element is obtained by applying the dyadic function /

operator f to the first two elements of x, the second element is obtained by applying f to the the second

and the third element, and so on; if x is a higher order array, array obtained in the same way by applying f

in parallel to the elements of each vector of the last dimension

If f is a function, then x must be delimited by parentheses (e.g., max|(v)).

PairScan-1 is an operator

Exceptions: x must be a non-null array.

#diadic
#boolean
#op
#monadic
#boolean
#op
#diadic
#boolean
#op

PairScan-2
Format: f|[n]x

Constraints: f is a function or an operator; x is an array; n is an integer

Description: as f|x, where f is applied to the dimension n of x

If f is a function, then x must be delimited by parentheses (e.g., max|[0](v)).

PairScan-2 is an operator

Exceptions: x must be a non-null array; n must be a correct dimension for x, currently between 0 and 2.

Power
Format: x^y

Constraints: x and y are arrays (the constraints are specified here)

Description: x to the power of y

Power is an operator

Power is a diadic polymorphic function

Exceptions: As specified here.

Product
Format: x*y

Constraints: x and y are arrays (the constraints are specified here)

Description: x times y

Product is an operator

Product is a diadic polymorphic function

Exceptions: As specified here.

Quotient
Format: x/y

#op
#op
#diadic
#op
#diadic

Constraints: x and y are arrays (the constraints are specified here)

Description: x divided by y

Quotient is an operator

Quotient is a diadic polymorphic function

Exceptions: As specified here.

Reduction-1
Format: f/x

Constraints: f is a function or an operator; x is an array

Description: if x is a vector, scalar obtained by applying the dyadic function / operator f to the first two

elements of x, then to the result and the third element, and so on; if x is a [n]order array, [n-1]order array

obtained in the same way by applying f in parallel to the elements of each vector of the last dimension

If f is a function, then x must be delimited by parentheses (e.g., max/(v)).

Reduction-1 is an operator

Exceptions: x must be a non-null array.

Reduction-2
Format: f/[n]x

Constraints: f is a function or an operator; x is an array; n is an integer

Description: as f/x, where f is applied to the dimension n of x

If f is a function, then x must be delimited by parentheses (e.g., max/[0](v)).

Reduction-2 is an operator

Exceptions: x must be a non-null array; n must be a correct dimension for x, currently between 0 and 2.

Scan-1
Format: f\x

Constraints: f is a function or an operator; x is an array

Description: if x is a vector, vector whose first element is obtained by applying the dyadic function /

operator f to the first two elements of x, the second element is obtained by applying f to the result and the

third element, and so on; if x is a higher order array, array obtained in the same way by applying f in

parallel to the elements of each vector of the last dimension

#op
#diadic
#op
#op

If f is a function, then x must be delimited by parentheses (e.g., max\(v)).

Scan-1 is an operator

Exceptions: x must be a non-null array.

Scan-2
Format: f\[n]x

Constraints: f is a function or an operator; x is an array; n is an integer

Description: as f\x, where f is applied to the dimension n of x

If f is a function, then x must be delimited by parentheses (e.g., max\[0](v)).

Scan-2 is an operator

Exceptions: x must be a non-null array; n must be a correct dimension for x, currently between 0 and 2.

Size
Format: @x

Constraints: x is an array

Description: size of x

Equivalent to the function size(x). The value is zero if x is a scalar, and a vector otherwise.

Size is an array function

Exceptions: no

order
Format: order(x)

Constraints: x is an array

Description: order, i.e., number of dimensions, of the array x

order is an array function

Exceptions: no

#op
#op
#vector
#vector

pline
Format: pline(vx,vy,x)

Constraints: vx and vy are vectors; x is an array

Description: the y value corresponding to x over the polyline whose vertices are in the vectors vx and vy

pline is a mathematical function

pline is an interpolation function

Exceptions: vx and vy must have the same number of elements, at least two; for each i, vx[i] must be

less than vx[i+1].

poisson
Format: poisson(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0 or 1

Description: Poisson probability distribution of parameters v=[p1], where p1=mean (p1>0; default value: 5

): random number extracted from the distribution if x and s are not specified; value of the pdf, if s==0 or the

cdf, if s==1, at the point x

poisson is a statistical function

poisson is a statistical distribution function

Exceptions: All elements of x must be strictly positive; s must be either 0 or 1.

rad2deg
Format: rad2deg(x)

Constraints: x is an array

Description: value of x converted from radians to degrees

rad2deg is a mathematical function

rad2deg is a monadic polymorphic function

Exceptions: no

rand
Format: rand()

#mat
#interp
#stat
#distrib
#mat
#monadic

Constraints: x (optional) is a scalar; y (optional) is a scalar

Description: random number extracted from a uniform distribution between 0 and 1, or between 0 and x if

only x is specified, or between x and y if both are specified

rand is a statistical function

Exceptions: If x is specified, it must be strictly positive; if both x and y are specified, the former must be

less than the latter.

randInt
Format: randInt(x)

Constraints: x is an array

Description: integer random number extracted from a uniform distribution between 0 and int(x-1)

randInt is a statistical function

randInt is a monadic polymorphic function

Exceptions: no

readFromXLS-1
Format: readFromXLS(x,y,r,c)

Constraints: x is a string; y, r, and c are scalars

Description: value read from the row r and column c of the sheet of index y of the xls workbook whose

filename is x

The xls workbook must be in the same directory of the model, and the filename x must be specified with no

pathname.

readFromXLS-1 is a control function

Exceptions: no

readFromXLS-2
Format: readFromXLS(x,y,r1,c1,r2,c2)

Constraints: x is a string; y, r1, c1, r2, and c2 are scalars

Description: vector or matrix read from the row r1, column c1 and the row r2, column c2 of the sheet of

index y of the xls workbook whose filename is x

#stat
#stat
#monadic
#control

The xls workbook must be in the same directory of the model, and the filename x must be specified with no

pathname.

readFromXLS-2 is a control function

Exceptions: no

remove
Format: remove(x,v)

Constraints: x is an array; v is either a scalar or a vector

Description: array obtained by removing the v-th element(s) from the first dimension of the array x

remove is an array function

Exceptions: no

resize
Format: resize(x,v)

Constraints: x is an array; v is a vector

Description: array obtained by resizing the array x to the size v, and by trimming the exceeding trailing

elements or padding with trailing zeros if required

resize is an array function

Exceptions: no

round
Format: round(x,y)

Constraints: x and y are arrays (the constraints are specified here)

Description: x rounded to y decimals

round is a mathematical function

round is a diadic polymorphic function

Exceptions: As specified here

#control
#vector
#vector
#mat
#diadic

set
Format: set(x,v0,v1,...,y)

Constraints: x is an array; v1, v2, ... are scalars or vectors; y is an array

Description: array obtained from the array x by substituting its subarray of indexes v0 from the 0-th

dimension, of indexes v1 from the 1-st dimension, ... with the array y0

set is an array function

Exceptions: no

shift
Format: shift(x,y)

Constraints: x and y are arrays

Description: array obtained by concatenating the array y to the array x at the left and removing the same

number of elements from x at the right

shift is an array function

Exceptions: It must be possible concatenate x with y in terms of their sizes.

shuffle
Format: shuffle(x)

Constraints: x is an array

Description: array obtained by randomly permutating the elements of the array x

shuffle is an array function

Exceptions: no

sigmoid
Format: sigmoid(vx,vy,x)

Constraints: vx and vy are vectors; x is an array

Description: the y value corresponding to x over the sigmoid controlled by the points vx[0],vy[0] and

vx[1],vy[1]

#vector
#vector
#vector

sigmoid is a mathematical function

sigmoid is an interpolation function

Exceptions: Both vx and vy must have two elements; vx[0] must be less than vx[1].

sign
Format: sign(x)

Constraints: x is an array

Description: sign of x, i.e., 1 if x > 0, -1 if x < 0, 0 if x == 0

sign is a mathematical function

sign is a monadic polymorphic function

Exceptions: no

sin
Format: sin(x)

Constraints: x is an array

Description: sine of x

x is expressed in radians.

sin is a mathematical function

sin is a monadic polymorphic function

Exceptions: no

size
Format: size(x)

Constraints: x is an array

Description: size of x

Equivalent to the operator @x. The value is zero if x is a scalar, and a vector otherwise.

size is an array function

Exceptions: no

#mat
#interp
#mat
#monadic
#mat
#monadic
#vector

sort
Format: sort(x,s)

Constraints: x is an array; s (optional) is a scalar

Description: array obtained by sorting the elements of the array x, either in direct order, if s==0 or it is not

specified, or in reverse order, if s==1

sort is an array function

Exceptions: If specified, s must be either 0 or 1.

spline
Format: spline(vx,vy,x)

Constraints: vx and vy are vectors; x is an array

Description: the y value corresponding to x over the spline whose node points are in the vectors vx and

vy

spline is a mathematical function

spline is an interpolation function

Exceptions: vx and vy must have the same number of elements, at least two; for each i, vx[i] must be

less than vx[i+1].

sqrt
Format: sqrt(x)

Constraints: x is an array

Description: square root of x

sqrt is a mathematical function

sqrt is a monadic polymorphic function

Exceptions: x must be positive.

#vector
#mat
#interp
#mat
#monadic

sysTime
Format: sysTime()

Constraints:

Description: number of milliseconds from the simulation start

sysTime is a control function

Exceptions: no

tan
Format: tan(x)

Constraints: x is an array

Description: tangent of x

x is expressed in radians.

tan is a mathematical function

tan is a monadic polymorphic function

Exceptions: no

tDistribution
Format: tDistribution(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0 or 1

Description: t-distribution probability distribution of parameters v=[p1], where p1=degrees of freedom (

p1>0; default value: 5): random number extracted from the distribution if x and s are not specified; value of

the pdf, if s==0 or the cdf, if s==1, at the point x

tDistribution is a statistical function

tDistribution is a statistical distribution function

Exceptions: All elements of x must be strictly positive; s must be either 0 or 1.

transpose
Format: transpose(x)

Constraints: x is an array

Description: array obtained by transposing the array x

#control
#mat
#monadic
#stat
#distrib

This function implements a generalized concept of transposition. If the argument is a scalar, then it is

returned as it is. Otherwise the i-th dimension of the argument is cycled to the (i+1)-th dimension of the

value.

transpose is an array function

Exceptions: no

uniform
Format: uniform(v,x,s)

Constraints: v (optional) is a vector; x (optional) is an array; s (optional) is a scalar, either 0, or 1, or 2

Description: uniform (rectangular) probability distribution of parameters v=[p1,p2], where p1=mean

(default value: 0), p2=stddev (default value: 1): if x and s are not specified, random number extracted from

the distribution; if s==0, pdf value at the point x; if s==1, cdf value at the point x; if s==2, inverse cdf value at

the probability x

uniform is a statistical function

uniform is a statistical distribution function

Exceptions: s must be either 0, 1, or 2; if s==2 then all elements of x must be in the interval [0,1].

wrap
Format: wrap(x,y)

Constraints: x and y are arrays (the constraints are specified here)

Description: x modulus y also dealing with negative values

While mod(-2,5)==-2, wrap(-2,5)==3.

wrap is a mathematical function

wrap is a diadic polymorphic function

Exceptions: As specified here

#vector
#stat
#distrib
#mat
#diadic

	STGraph - System defined functions
	Operators
	Mathematical functions
	Statistical functions
	Control functions
	Array functions

	STGraph - Functions listed by functional categories
	STGraph - Monadic polymorphic functions / operators
	STGraph - Diadic polymorphic functions / operators
	STGraph - Boolean operators
	STGraph - Polymorphic functions handling statistical distributions
	STGraph - Interpolation functions

	STGraph - Functions

