
A computational system for uncertainty propagation
of measurement results

(short title: "A system for uncertainty propagation")

Luca Mari
Università Cattaneo – LIUC

C.so Matteotti, 22 – 21053 Castellanza (VA), Italy

Abstract

This paper discusses some design issues in the implementation of the law of uncertainty propagation

according to an automatic differentiation strategy in the context of a simulation engine supporting the

construction and the interactive testing of models of dynamic systems. The proposed solution propagates

not only the partial derivatives, as usual in automatic differentiation, but also the input uncertainties, so to

make their various modifications visible to the user of the evaluation system, and give him the

opportunity to analyze the partial contributions to the standard uncertainty of the output measurand. A

tool for uncertainty propagation in a general, user-oriented, computational system, instead of a software

library or a dedicated system, makes uncertainty propagation transparently computable also for vector /

matrix measurands, even in the case of dynamic systems, and makes uncertainty evaluation an inherent

component of computational processes instead of an optional, ad hoc, addendum to them.

Keywords: uncertainty propagation; automatic differentiation; computational methods for measurement

1. Introduction

“There are certain human activities which apparently have perfect sharpness. The realm of mathematics

and of logic is such a realm, par excellence. Here we have yes-no sharpness. But this yes-no sharpness is

found only in the realm of things we say, as distinguished from the realm of things we do. Nothing that

happens in the laboratory corresponds to the statement that a given point is either on a given line or it is

not” [1].

While that measurement results are not “yes-no sharp” is a commonly accepted standpoint nowadays, the

1

epistemological background for this position is still highly debated, as the multiplicity of (not always

clearly compatible) concepts in the International Vocabulary of Metrology [2] (2.13 measurement

accuracy; 2.14 measurement trueness; 2.15 measurement precision; 2.16 measurement error; 2.26

measurement uncertainty, just to mention a few of them) witnesses. This confusion state did not prevent a

wide agreement in the metrological community around a formal procedure to express “degrees of non-

yes-no sharpness” in measurement, modeled in terms of uncertainties, as specified by the Guide to the

Expression of Uncertainty in Measurement (GUM) [3]. The preliminary hypothesis for the application of

this procedure is that many measurement processes include a data processing stage, aimed at computing a

function RR:f n  whose argument is a n-tuple x1, ..., xn=[xi] of input quantities, typically comprising

some influence quantities, and whose value y is the (output) measurand. Since the values xi have generally

an uncertainty associated, the issue arises on how the function f propagates such uncertainty to the value

y. The basic procedure recommended by the GUM to compute the function f, in this context called the

“measurement function” (“function of quantities, the value of which, when calculated using known

quantity values for the input quantities in a measurement model, is a measured quantity value of the

output quantity in the measurement model” [2, 2.49], being a measurement model the “mathematical

relation among all quantities known to be involved in a measurement” [2, 2.48], a peculiar terminology

taken from [1, 3.1.6]), is based on the so called law of uncertainty propagation (“LUP” henceforth), which

(i) requires each quantity to be expressed as a couple x=quantity value, u(x)=standard uncertainty of x, (ii)

assumes that y and u(y) are computed separately, and (iii) derives the standard uncertainty u(y) of y from

the first-order approximation of the Taylor series of the function f at [xi], i.e., in terms of the contributions

u(xi), each of them weighed by the sensitivity coefficient f/xi, i.e., the ratio of change of the function f at

the n-dimensional point [xi] along the i-th dimension. Specifically, the LUP states that:

   i

n

i= i

xu
x

f
=yu 2

1

2

 










(1)

under the hypothesis of null covariances, or:

2

   ji

n

i=

n

=j ji

x,xu
x

f

x

f
=yu  





1 1

(2)

equivalent to:

     ji

n

i=

n

+i=j ji
i

n

i= i

x,xu
x

f

x

f
+xu

x

f
=yu  



















 1

1 1

2

1

2

2 (2b)

if one or more covariances u(xi, xj) are non null (by exploiting the fact that u(xi, xj)=u(xj, xi)), sometimes

also written:

         jiji

n

i=

n

+i=j ji
i

n

i= i

xuxux,xρ
x

f

x

f
+xu

x

f
=yu  


















 1

1 1

2

1

2

2 (2c)

where (xi,xj)[-1,1] is the correlation coefficient of xi and xj.

For a given measurement function f, provided that the standard uncertainties u(xi) and the covariances

u(xi,xj), or the correlation coefficients (xi,xj), are given (the hypotheses at the basis of the LUP hold

independently of the technique, either “type A” or “type B” as denoted by the GUM, adopted to evaluate

the standard uncertainties), Eq. (1) shows that the substantial problem of computing the LUP is to obtain

the partial derivatives f/xi. Two common methods to this goal are symbolic differentiation and

numerical differentiation by finite differences. Both these techniques have known drawbacks. With the

aim of overcoming them a computational technique known as automatic differentiation (AD) [4] has been

proposed. AD exploits the possibility for many functions f to be decomposed into a sequence of elemental

functions, any one of which may be trivially differentiated. These partial derivatives, evaluated at a given

argument, can be then combined in accordance with the chain rule, as specified in derivative calculus, to

generate the required derivative for f. It should be noted that this process yields exact (to numerical

accuracy, i.e., round-offs) numerical values of derivatives. Because the symbolic transformation occurs

only at the most basic level (a computer program could implement differentiation of elemental functions

by a simple table lookup), AD avoids the computational problems inherent in complex symbolic

computation.

The application of AD for computing the LUP has already been considered ([5], [6]), and some software

3

libraries implementing it have been developed (e.g., [7], who presents his work in terms of a specialized

version of the Interpreter design pattern he calls “the GUM tree”, and [8]). It is also plausible that some

kind of AD is adopted in software packages specialized in measurement uncertainty management, such as

[9] (see [10]), that typically allow the user interactively specifying at least:

 the measurement function as a string that can contain variable symbols, standing for input quantities,

together with the basic polynomial, trigonometric, … functions;

 the value of each input quantity and its standard uncertainty (either stated explicitly or computed

from a probability distribution whose parameters are entered);

 the table of correlation coefficients,

and from this data compute the output measurand value and its uncertainty, both as combined standard

uncertainty and expanded uncertainty provided that a coverage factor has been also specified.

This paper discusses some design issues arising in the implementation of an algorithm for computing the

AD-based LUP in the context of a simulation engine [11] supporting the construction and the interactive

testing of models of dynamic systems (at the address http://www.liuc.it/persone/lmari/stgraph such a

system can be freely accessed / downloaded). The driving hypothesis is that the introduction of tools for

uncertainty propagation in general, user-oriented, computational systems, instead of software libraries or

dedicated systems, could allow making uncertainty evaluation an inherent component of computational

processes instead of an optional, ad hoc, addendum to them, thus contributing to increase the awareness,

even outside the metrological community, that experimental data should generally computed together

with their uncertainty (hence as non “yes-no sharp” data). A specific problem is also particularly taken

into account in this paper, and a possible solution is presented in the context of the mentioned software

system: the AD-aware definition of non-derivable or even non-continuous elemental function,

accomplished by a fuzzy smoothing at the threshold of different standard uncertainties.

2. Automatic differentiation for uncertainty propagation

The first steps to make a function f computable by an automatic executor, such as the interpreter of a

programming language or a spreadsheet, are to parse its expression, recognize the tokens by which it is

4

constituted and organize them into a hierarchical structure, e.g., a parenthesized list or a tree structure

whose leaves are the function arguments and the nodes are the elemental functions recognized in the

tokenization stage. The same holds in the case in which together with the function also its partial

derivatives must be computed. As simple example, consider at first a univariate function RR:f  such

as y=f(x)=sin(x2+1). This function is parsed to the tree shown in Figure 1 and then typically evaluated by

means of a stack structure as in Figure 2 (to highlight that the evaluation process is numerical, instead of

symbolic, a given value for the function argument will be assumed, e.g., x=3.0; note that measurement

units will be maintained implicit from now on).

Figure 1 – Tree resulting from the parsing of a simple function.

Figure 2 – Evaluation trace of a simple function (to be read bottom-up).

Exactly the same structure and process are exploited by the so called Forward-Mode AD to compute f/x

in parallel to y=f(x). Instead of as a scalar, each variable (the input quantity x, the intermediate results, the

output measurand y) is now formalized as a non-primitive type, so to maintain not only the variable value

but also the (partial) derivative of the computed function, i.e., the couple x, Dx (let us denote f/x as Dx

for short). The data pushed to and popped from the stack are now such couples. Correspondingly, the

elemental functions must be extended to operate on such objects. In our example:

Dxnx,x=Dxx, nnn 1

21212211 Dx+Dx,x+x=Dx,x+Dx,x (3)

     Dxx,x=Dxx, cossinsin

and so on, according to the chain rule of differentiation. The recursive evaluation process must be seeded

by setting the derivative component of its inputs:

 for the variable x: x=3.0, Dx=1 (the derivative of a variable with respect to itself is 1);

 for the constant 1: 1, D1=0 (the derivative of a constant is null).

Hence in this case the evaluation trace becomes as shown in Figure 3.

Figure 3 – AD-enabled evaluation trace of a simple monadic function.

5

The output y=0.54, Dy=5.03 is finally combined by the LUP with the standard uncertainty of the

input quantity, let us assume for example u(x)=0.1, to obtain the standard uncertainty (called “combined

uncertainty” by the GUM) of the output measurand. Eq. (1) leads in this case trivially to

     0.50=xuDy=yu .

This basic version must be extended to deal with RR:f n  functions. In this case Eqs. (1) and (2)

require all the n partial derivatives f/xi=Dix to be computed, a process that can be effectively performed

in parallel by maintaining together with each variable value the whole vector [D1x, ..., Dnx] of its partial

derivatives, thus extending the non-primitive type of the variables to x, [Dix] (note that an increase in

space, i.e., memory, efficiency would be obtained by performing n swaps, one for each partial derivative

to be evaluated, thus reducing the logical parallelism of the algorithm we are going to present; we will

adopt here the sequential version mainly for reasons of clarity in the presentation). The elemental

functions must now compute all the elements of the derivative vector(s), e.g.:

          =xDx,x,Dx,x=xDx, ni cos...cossinsin 1

    xDx,x= icossin (4)

for a single argument function, and, e.g.:

      =xD+xD,,xD+xD,x+x=xD,x+xD,x nnii 212111212211 ...

 2121 xD+xD,x+x= ii (4b)

for a dyadic function.

In the simple example of the function    2
2
121 sin xx=x,xf=y , the evaluation process (assuming

x1=3.0 and x2=2.0) is shown in Figure 4.

Figure 4 – AD-enabled evaluation trace of a simple dyadic function.

Together with the standard uncertainties u(xi) and covariances u(xi ,xj), the results of this process are

finally fed into Eq. (1) or (2) to obtain the combined uncertainty u(y). It should be noted that the initial

values of the derivative vectors, by which the process is seeded, are in the example 1, 0 for x1 and 0, 1

6

for x2, and in general Dixj=ij (ij=1 if i=j and =0 otherwise). In the case an input quantity occurs more

than once in the function expression, these seeds must be assigned consistently. For example, the function

   2
2
1121 sin xxx=x,xf=y must be seeded as shown in Figure 5, a structure actually corresponding

to the acyclic directed graph shown in Figure 6.

Figure 5 – AD seeding for a simple dyadic function represented as a tree.

Figure 6 – AD seeding for a simple dyadic function represented as a directed graph.

This graph gives the hint for a further extension of the AD-based uncertainty propagation process. It

should be noted, indeed, that what is propagated through the graph are the partial derivatives, not the

uncertainties, for which the graph itself remains a black box. On the other hand, it could be sometimes

interesting to have also uncertainties propagated through the graph, so to make their progressive

modifications visible to the user of the evaluation system, and give him the opportunity to introduce

locally the possible covariances and to analyze the partial contributions to the final result, i.e., the

standard uncertainty of the output measurand.

3. Propagating uncertainties through graphs

When a function f is complex, and possibly formalizes a multi-measurand / multivariate problem,

mn RR:f  , an effective technique to formalize and to compute it is to define it as a set of intermediate

functions combined in an acyclic directed graph. This way, the computation of f is split into intermediate

steps, one for each node of the graph. As a (trivial, indeed) example, the function y=sin(x1)cos(x2) can be

alternatively defined by the four graphs shown in Figure 7.

Figure 7 – Four possible definition graphs for the same dyadic function.

We will call them (user generated) definition graphs (d-graphs for short), in contrast to the (parser

generated) evaluation graphs (e-graphs) introduced in the previous section. A d-graph is such that:

 each node represents a quantity or an intermediate function, which is in its turn parsed to an e-graph;

 each arrow from a node fi to a node fj represents the functional dependence of (the variable associated

7

with) fj on (the variable associated with) fi;

 nodes without incoming arrows (“input nodes”) are associated with input quantities xi;

 nodes without outgoing arrows (“output nodes”) are associated with output quantities yj.

Hence, (a) and (d) are respectively a black box and a white box d-graph, since (a) hides the whole

function definition in the output node y, while (d) splits f in all possible intermediate functions.

In a simulation engine supporting the graph-based definition and editing of model functions, a non-black

box d-graph (i.e., graphs (b), (c), and (d) in the example) allows the user to get information on the

computational state of the intermediate functions, and therefore on partial results including, if suitably

implemented, their uncertainty: a white box d-graph is indeed formally equivalent to the corresponding e-

graph but, on the contrary of the e-graph, it allows the user to interact with intermediate functions. To this

goal, each node fi of a d-graph must be dealt with as an object characterized in each time instant not only

by a value but also by a standard uncertainty and a covariance matrix, fi=vi, u(vi), [u(vj,vk)]. For

implementing a multi-step LUP computation the following constraints are proposed, also on the basis of

the experience acquired in the design and implementation work done in the context of the mentioned

simulation engine we are developing:

C1. uncertainties as inputs: input nodes, and only input nodes, have both their value and standard

uncertainty assigned as exogenous data, whereas their covariance matrix is identically null;

C2. local definition of covariances: non-input nodes functionally depending on 2m nodes have a

mm covariance matrix related to such nodes (as a trivial consequence, the covariance matrix of

any node depending on a single node is null) and assigned as exogenous data.

The constraints C1 and C2 guarantee the distinction between input uncertainties and propagated

uncertainties, and in particular prevent an already partially computed propagated uncertainty to be

overridden by an input uncertainty.

Let us assume that the engine is already provided with a d-graph compliant evaluator, i.e., an executor

able to evaluate the nodes fi in the proper sequence (*), and that the implementation of the elemental

(*) Let {Fj} be a partition on the set F of nodes of a d-graph such that:
 F0 is the subset of input nodes;
 F1 is the subset of nodes directly connected only from input nodes, i.e., nodes in F0;

8

functions is already AD-aware, in the sense that the data they deal with are couples x,[Dix], as discussed

in the previous section. Such an evaluator is then suitably extended to compute the standard uncertainties

of all non-input nodes of the d-graph by the following recursive procedure (Greek letters are references to

the Java implementation, as presented in the Appendix):

 if fi is an input node (recursion base):

 get / evaluate the value vi (standard procedure)

 get the standard uncertainty u(vi) (exogenous data: see constraint C1) //

 store fi=vi, u(vi) as node value //

 else (fi is a non-input node, directly depending on the m nodes [fj]) (recursion step):

 for each fj :

 get the value vj (which includes standard uncertainty: see constraint C1)

 generate the m seeds Dkfj=kj //

 make vj,[Dkfj] available to the evaluator as value of fj

 evaluate the value vi,[Dkfi] (AD-aware procedure) //

 given the m standard uncertainties u(vj), the m partial derivatives Dkfj , and the (m2m)/2

covariance values u(vj,vk) (covariances are exogenous data: see constraint C2):

 compute           kjkk

m

=j

m

+j=k
jjj

m

=j
jji v,vufDfD+vufD=vu  

 1

1 1

2

1

2 2 (a local

equivalent of Eq. (2b)) //

 store fi=vi, u(vi) as node value //

Hence, all graph nodes are recursively evaluated and the evaluation of the combined standard

 F2 is the subset of nodes not in 10 FF  and directly connected only from nodes in 10 FF  ;

 Fj is the subset of nodes not in i
j

i=
F

 1

0
 and directly connected only from nodes in i

j

i=
F

 1

0
,

the maximum index j such that jF being called the computational width w of the graph.

Hence, a function f is computed through the d-graph by w+1 macro-steps (each of them including
one or more steps which can be in principle executed in parallel) as follows:

 macro-step 0: each input node in F0 is evaluated from its externally assigned value;

 macro-step j, j=1,...,w: each node in Fj is evaluated from the values of the nodes in i
j

i=
F

 1

0
.

9

uncertainties is completed.

As a simple case of this procedure, let us consider the evaluation of the function y=sin(x1)cos(x2), for

example for x1=1.0, u(x1)=0.1 and x2=2.0, u(x2)=0.2, from which the result y=0.35, u(y)=0.15 is obtained.

On the other hand, if the version (d) of the d-graph is implemented, the partial uncertainties for z1=sin(x1)

and z2=cos(x2) can be obtained, u(z1)=0.05 and u(z2)=0.18, thus highlighting that the main contribution to

the combined standard uncertainty comes from the second term.

A subtle problem must be finally considered, related to possible “hidden” covariances, generated by the

introduction of the intermediate steps in the evaluation procedure. In a variation of the previous example,

let us suppose that the function under evaluation is y=sin(x)cos(x), by means of the d-graph shown in

Figure 8.

Figure 8 – Definition graph of a monadic function, showing a case of the “hidden” covariances.

The given procedure gives the intermediate standard uncertainties u(z1)=0.05 and u(z2)=0.08, and the

combined standard uncertainty u(y)=0.08, a wrong value (the correct one is 0.04) which does not take into

account the fact that the intermediate variables z1 and z2 are indeed correlated because of their common

dependence on x. Since the LUP is based on the first order approximation of the Taylor series of the

measurement function, the correlation coefficient (z1,z2) is equal to either +1 or 1, dependently on the

trend (i.e., the sign of the first derivative) of the involved functions at the point x, i.e.,    ZZ=z,zρ /21

where
x

z

x

z
=Z





 21 . Once this “auto” correlation has been identified, Eq. (2c) is then particularly

suitable to the evaluation procedure of the LUP.

4. Validation

The presented AD-based LUP implementation can be validated directly within the simulation engine by

exploiting its flexibility in operating in parallel with different computational processes. Let us assume that

a measurement function Y=f(X1,...,Xk) has been implemented, and that for each input quantity Xi an

average value xi and its standard uncertainty u(xi) are given. Moreover, let us hypothesize that the

10

population from which the values xi and u(xi) have been obtained follows a known probability

distribution. Hence, the same function f can be operated in three distinct cases:

 “theoretical LUP”: the set of couples xi, u(xi) is taken as input, from which the LUP is computed as

discussed and the couple ythLUP, u(ythLUP) is obtained;

 “experimental LUP”: for each Xi a set {xi,j}j of n values is generated by a Montecarlo sampling on

the given distribution with the given xi and u(xi); for each {xi,j} the sample average nx=x
j

ji,i /

and its standard uncertainty       












 1/2 nnxx=xu

j
iji,i are computed; the set of couples

 ix ,  ixu  is then taken as input, from which the LUP is computed and the couple

yexLUP, u(yexLUP) is obtained;

 “Montecarlo propagation”: the same sets {xi,j}j generated in the previous case are taken into account;

for each of the k-tuples x1,j,..., xk,j the value yj=f(x1,j,..., xk,j) is computed, thus obtaining a set {yj} of n

values, from which the sample average ny=y
j

jMC / and its standard uncertainty

      












 1/2 nnyy=yu

j
MCjMC are computed.

Hence, a comparison of the three couples ythLUP, u(ythLUP), yexLUP, u(yexLUP), and yMC, u(yMC) is

informative on the correctness of the LUP implementation:

 first of all, the relative error between ythLUP and yexLUP and between u(ythLUP) and u(yexLUP) can be

interpreted as a validator of the goodness of the random generator from which the sample sets are

produced;

 under the hypothesis of a positive result in the first test, the relative error between yexLUP and yMC and

between u(yexLUP) and u(yMC) (note that such values are obtained from the same sample data set) can

11

be interpreted as a validator for the LUP implementation.

As an example, Figure 9 shows the graph implementing the validator for the simple function Y=X1/X2,

with X1 associated with a Gaussian distribution with average 1.0 and standard deviation 0.05, and X2

associated with a rectangular distribution with bounds 1.5 and 2.0. The number n of samples is set to

1000. Nodes deltaCheck and deltaChecku compute the relative percentage error between theoretical and

experimental LUP; nodes delta and deltau compute the relative percentage error between experimental

LUP and Montecarlo propagation.

Figure 9 – Graph implementing the validator for the simple function Y=X1/X2

This validation strategy can be particularly useful in the case of non linear functions, to obtain some

general hints about the reliability of an uncertainty evaluation by means of the LUP.

5. On the definition of AD-aware elemental functions

A specific problem arising in the introduction of the AD-based LUP in the context of a general simulation

engine, such as the one we are developing, is related to the definition of the AD-aware elemental

functions. While software packages specialized in measurement uncertainty management typically deal

with only a small set of basic elemental functions, such as arithmetic operators and trigonometric

functions, simulation engines commonly include a rich set of functions to enable an efficient and flexible

modeling process. Many of such functions are complex in their definition (as a paradigmatic case

consider a function implementing the Fast Fourier Transform of its vector argument) and / or are not

everywhere differentiable, e.g., the function min(x1,x2), or even not continuous, e.g. the function

if(x1,x2,x3), which expresses in functional form the conditional operator that in the C / C++ / Java

programming languages is written:

result = x1 ? x2 : x3;

interpreted as “if the condition x1 is true, assign to result the value of x2; otherwise, the value of x3”.

While these functions cannot be directly fed into Eqs. (1) and (2), they can be computationally dealt with

as in the following example, taking into account how an AD-aware implementation of the function

min(x1,x2) can be done despite of the non-differentiability of the function itself. The function min(x1,x2)

12

can be defined as:

 


 

otherwisex

xifxx
=x,x

2

211
21min

so that:

 


 

otherwise

xifx
=

x

x,x

0

1min 21

1

21 and
 



 

otherwise

xifx
=

x

x,x

1

0min 21

2

21

and for the chain rule (writing the conditional operator according to the Java syntax):

    2121212211 :?minmin DxDxxx,x,x=Dx,x,Dx,x  (5)

showing that in this case the uncertainty propagation consists actually in the selection between the

standard uncertainties of the input quantities. As function of x1 and x2, u(y) has a discontinuity even if

y=min(x1,x2) is continuous. This is conceptually questionable, as a simple case shows (see Figure 10). Let

us suppose that x2 has a constant value, say x2=5.0, with u(x2)=0, and consider the behavior of

u(min(x1,x2)) while x1 changes its value in the interval [4.0, 6.0] with a constant standard uncertainty

u(x1)=0.1. According to the previous definitions, the switch of u(y)=u(min(x1,x2)) at the value x1=5.0

implies that the standard uncertainty of the output measurand is null if, e.g., x1=5.1, a conclusion that

contradicts the fact that the value for the input quantity x1 is uncertain, so that it could have been instead

expressed as 4.9 with a non-null probability. In fact, the boolean rule prevents in this case the uncertainty

u(x1) to be propagated to u(y).

Figure 10 – Chart of (a) y=min(x1,x2) and (b) u(y) for x1[4.0,6.0] along the x-axis,

x2=5.0, and u(x1)=0.1 and u(x2)=0.0.

This problem can be solved by borrowing the concept of threshold smoothing from the fuzzy set theory:

while maintaining the standard implementation for y=min(x1,x2) (in the opposite case a defuzzification

step would be however required to maintain the logic underlying the LUP), the partial derivatives can be

propagated by fuzzifying the transition from Dx1 to Dx2. Instead of the definition in Eq. (5), i.e.,

2121 :? DxDxxx  , in the case of linear transition the following rule is adopted:

13

given
200

12
%

DxDx
k=k


,

  
  

   

















otherwisesign
100

 if

 if

12
%

1

212

211

k+xxk
k

+Dx

k+x>xDx

kxxDx

(6)

where k% is a system parameter ranging from 0 (crisp transition) to 100 (smooth transition, with slope

from Dx1 to Dx2 equals to 1± . Hence, the previous chart for k%=50 and =100 becomes respectively as

shown in Figure 11 (it should be noted that this fuzzy rule also solves the subtle problem of deciding

which standard uncertainty should be assigned to the singular point, x=5.0 in this case).

Figure 11 – Chart of u(min(x1,x2)) in the case the “fuzzification factor” k% is equal to 50 (a) and 100 (b).

As a little bit more complex and interesting example, consider y=max(sin(x1),x2) with x2=0.0, u(x2)=0.05,

and x1 varying in the interval [0.0, 5.0] with u(x1)=0.1. The charts in Figure 12 show, in function of x1 , the

value of y, the value of u(y) for k%=0, and the value of u(y) for k%=100.

Figure 12 – Chart of (a) y=max(sin(x1),x2) and u(y) with k%=0 (b) and k%=100 (c) for x1[0.0,5.0] along the x-axis,

x2=0.0, and u(x1)=0.1 and u(x2)=0.05.

These results, and specifically the value of u(y) as a function of k%, can be compared to the standard

uncertainty computed by propagating the assumed distributions of the input quantities by the Montecarlo

method (the simulation engine we are developing is able to propagate distributions, as exploited in the

validation strategy presented above and as discussed in [11]: hence, the following comparison has been

directly performed by the engine).

Let us consider once more the case of computing u(y)=u(min(x1,x2)), for example from the input

quantities x1=4.8, u(x1)=0.1, and x2=5.0, u(x2)=0.0. From the proposed rule, Eq. (6), if k%=50 then

u(y)=0.09, and if k%=100 then u(y)=0.07, both of them correctly being included in the interval

[u(x2),u(x1)]=[0.0,0.1].

By assuming, e.g., x1N(4.8;0.1), a Montecarlo sampling can be performed, and the computed distribution

for y, in this case with 10 k samples, is as in Figure 13, clearly highlighting that the fraction of the sample

14

set such that x1>5.0 was accumulated to y=5.0.

Figure 13 – The histogram distribution obtained by a Montecarlo sampling of min(x1,x2)

with x1~N(4.8,0.1) and x2=5.0.

From this distribution the sample standard deviation can be computed, u(y)0.097, showing that in this

Gaussian case the “smoothing parameter” k% should be chosen with a value less than 50 (and specifically,

after some fine tuning, 42).

An analogous conclusion is obtained when x1=4.9, u(x1)=0.1, in which the fact that x1 is closer to the

threshold x2 makes the case even more critical, as the propagated distribution for y in Figure 14 shows

(consider that in this case the peak at x=5.0 collects about 1.6 k samples).

Figure 14 – The histogram distribution obtained by a Montecarlo sampling of min(x1,x2)

with x1~N(4.9;0.1) and x2=5.0.

Now, if k%=50 then u(y)=0.07, and if k%=100 then u(y)=0.06, while the sample standard deviation is

u(y)0.086, corresponding to k%28.

These examples show that the proper choice of a value for k% can be a matter of fine tuning for the model

under analysis, but seem to confirm the substantial correctness of the logic underlying the presented

procedure.

6. Conclusions

Of the general steps of which a measurement uncertainty analysis procedure consists:

1. formalize the measurement process as a function mapping one or more input quantities to one or more

output measurands;

2. identify the uncertainty sources and (possibly) distributions;

3. evaluate the uncertainties of the input quantities;

4. combine such uncertainties to obtain the uncertainties of the output measurands;

5. report the analysis results,

this work mainly focused on step 4.

15

The proposed strategy enables a parser / evaluator to deal with uncertain data with minimal, and however

localized, modifications with respect to its standard implementation: (i) data values and functions

operating on them must be (re)defined to be AD-aware, i.e., so to be able to compute partial derivatives,

and (ii) the standard evaluation procedure must be encapsulated by a pre-processing step, aimed at

seeding the AD process, and a post-processing step, which actually computes the LUP. As a benefit of this

approach, the computational features of the parser / evaluator are easily adapted to uncertainty

management, thus enabling to propagate uncertainty to vector or matrix variables, to compute and

visualize uncertainties for whole (time) series instead of single points only, and to propagate uncertainty

also in sequential / dynamic (stateful) models, and not only in combinatorial / algebraic (memoryless)

ones. Furthermore, the adoption of a graph-based simulation engine makes the uncertainty propagation

process visible to the user, who by means of the graph defining the measurement function specifies the

level of granularity to access the intermediate results in the propagation itself. Finally, the computational

environment allows extending the LUP application to non everywhere differentiable or even non

continuous elemental functions by means of their AD-aware redefinition.

The introduction of tools for uncertainty propagation in a general, user-oriented, computational system,

instead of a software library or a dedicated system, allows making uncertainty evaluation an inherent

component of computational processes instead of an optional, ad hoc, addendum to them. Furthermore,

the generality of the simulation engine generates flexibility in decision about the technique to adopt for

uncertainty formalization: indeed, the same tool can be used to formalize not only the LUP but also, e.g.,

the propagation of distributions by Montecarlo method [12] or an iterative, approximate, technique such

as PUMA [13], and a comparison of their results can be easily performed, with the aim of validating them

and possibly choosing the best strategy according to the problem structure and available data.

Appendix: implementation strategy in the Java programming language

The data pushed to and popped from the evaluation stack are objects of the ADDouble (“AD-enabled

double”) class.

/** AD-enabled Double class. */
public class ADDouble extends Number implements Comparable<ADDouble> {
 /** The value of this object. */

16

 private double value;
 /** The partial derivatives of this object (in reference to a given expression). */
 private double[] der;

 // together with the accessor methods (get* / set*)
 // as in the JavaBeans design pattern
}

Correspondingly, the elemental functions must be extended to operate on such objects. To best exploit the

the object-orientedness of the Java language, each of these functions can be implemented as a class

extending (i.e., subclassing) a superclass which gathers all common behaviors. For example, a single

argument function such as the one that computes sin(x) can be implemented as (*):

/** Class implementing the sin() elemental function. */
public class Sin extends Function {
 // ...

 /** Evaluate the elemental function.
 * @param input the function argument
 * @return the value of the function
 */
 final ADDouble exec(final ADDouble input) {
 double val = Math.sin(input.getValue());
 return getResultWithDer(input, val); // a method inherited from the superclass
 }

 /** Compute an element of the partial derivative vector.
 * @param input the function argument
 * @param i the index of the derivative to compute
 * @return the result
 */
 @Override
 double computeDer(final ADDouble input, final int i) {
 return Math.cos(input.getValue()) * input.getDer(i);
 }
}

the common superclass being:

/** Abstract class implementing the common features of the elemental functions. */
public abstract class GeneralFunction {
 // ...

 /** Get the result of a monadic function, including the partial derivatives.
 * @param input the function argument
 * @param val the function value
 * @return the result

(*) The shown implementation for the method exec() assumes the partial derivatives to be computed
even in the case of models for which the standard uncertainty for input measurands is not specified,
i.e., is null. Given the fact that AD typically at least doubles the computation times, this strategy is
clearly inefficient. Hence, the user assignable model property withUncertainty has been introduced, so
that the actual implementation of the mentioned method is the following:

final ADDouble exec(final ADDouble input) {
double val = Math.sin(input.getValue());
if(Model.isWithUncertainty()) { return ADDouble.valueOf(val); }
return getResultWithDer(input, val);

}

17

 */
 ADDouble getResultWithDer(final ADDouble input, final double val) {
 double[] d = input.getDer();
 if(d == null) { return ADDouble.valueOf(val); }
 int size = d.length;
 double[] der = new double[size];
 for(int i = 0; i < size; i++) {
 der[i] = computeDer(input, i); // delegated to the subclasses
 }
 return ADDouble.valueOf(val, der);
 }
}

The implementation is analogously simple for the n-adic, 2n , elemental functions, and only becomes

more complex in the case of non everywhere differentiable or non continuous functions, such as

min(x1,x2), for which the effect of threshold smoothing discussed in the section 4 is introduced.

The nodes of d-graphs are instances of the class:

/** d-graph node class. */
public class Node {
 /** The value of this node. */
 private double value;
 /** The standard uncertainty of this node. */
 private double unc;
 /** The data on correlations. */
 private ArrayList<CorrelData> correlData;

 // together with the accessor methods (get* / set*)
 // as in the JavaBeans design pattern,
 // together with several other methods (see below)
}

being:

/** Correlation data type. */
class CorrelData {
 /** Correlation value. */
 private double correl;
 /** Index of the first node. */
 private int indexOfNode1;
 /** Index of the second node. */
 private int indexOfNode2;
}

so that the AD-aware, LUP-enabled evaluator method (part of the Node class) has the following structure

(Greek letters are references to the algorithm, as presented in section 3):

/** Set the value of this node by evaluating its defining expression.
 */
final void evaluate() {
 // initalization stage
 // ...
 uncPreProcessor(); // uncertainty pre-processor
 ADDouble value = evalExpression(); // standard (AD-enabled) evaluator []
 double unc = uncPostProcessor(value); // uncertainty post-processor
 setValue(value.getValue()); []
 setUnc(unc); []
 // completion stage, and exception handling
 // ...

18

}

/** Uncertainty pre-processor: it seeds the evaluation process
 * by setting the derivative component of the defining nodes of this node.
 */
private void uncPreProcessor() {
 if(!Model.isWithUncertainty()) { return; } // see the previous footnote
 int size = getDefiningNodes().size(); // number of defining nodes
 if(size == 0) { return; } // an input node: nothing to do
 for(int i = 0; i < size; i++) {
 EDouble v = getDefiningNodes().get(i).getValue(); // previously evaluated
 v.setDer(new double[size]); // initialize the array of partial derivatives
 for(int j = 0; j < size; j++) { v.setDer(j, 0.0); }
 v.setDer(i, 1.0); // seed for AD []
 }
}

/** Uncertainty post-processor: it computes the standard uncertainty of this node.
 * @param value the value, as obtained without uncertainty
 * @return the standard uncertainty of the specified node
 */
private double uncPostProcessor(final ADDouble value) {
 if(!Model.isWithUncertainty()) { return 0.0; } // see the previous footnote
 if(isInput()) { return getUnc(); } // simply transfer the uncertainty []
 double unc = 0.0; // initialize the uncertainty value
 for(Node iNode : getDefiningNodes()) { // the first step of LUP computation
 unc += Math.pow(result.getDer(i), 2) * Math.pow(iNode.getUnc(), 2); []
 }
 for(CorrelData data : getCorrelData()) { // the first step of LUP computation
 double correl = data.getCorrel(); // for adding the covariances
 int i1 = data.getIndexOfNode1();
 int i2 = data.getIndexOfNode2();
 unc += 2 * correl * getDefiningNodes().get(i1).getUnc() * value.getDer(i1)
 * getDefiningNodes().get(i2).getUnc()) * value.getDer(i2); []
 }
 return Math.sqrt(u); []
}

References

[1] P.W.Bridgman, How much rigor is possible in physics?, in: Henkin et al. (eds.), The Axiomatic

method, North-Holland, 1959.

[2] ISO et al., ISO/IEC Guide 99:2007, International Vocabulary of Metrology – Basic and General

Concepts and Associated Terms, 3rd ed., Geneva, 2007.

[3] International Organization for Standardization, Guide to the expression of uncertainty in

measurement, Geneva, 1993, amended 1995 (published by ISO in the name of BIPM, IEC, IFCC,

IUPAC, IUPAP and OIML) (now also ISO ENV 13005: 1999).

[4] L.B.Rall, The arithmetic of differentiation, Math. Mag., 59, 275, 1986.

[5] B.D.Hall, Calculating measurement uncertainty using automatic differentiation, Meas.Sci.Technol., 13

19

421–427, 2002.

[6] R.Boudjemaa, M.G.Cox, A.B.Forbes, P.M.Harris, Automatic differentiation and its application in

metrology, in: Advanced Mathematical and Computational Tools in Metrology VI, P.Ciarlini,

M.G.Cox, F.Pavese, G.B.Rossi (Eds.), World Scientific Publishing, 2004.

[7] B.D.Hall, The GUM tree design pattern for uncertainty software, in: Advanced Mathematical and

Computational Tools in Metrology VI, P.Ciarlini, M.G.Cox, F.Pavese, G.B.Rossi (Eds.), World

Scientific Publishing, 2004.

[8] M.T.Flanagan, Michael Thomas Flanagan's Java Scientific Library,

http://www.ee.ucl.ac.uk/~mflanaga/java/index.html, last accessed: summer 2007.

[9] Danish Technological Institute, GUM Workbench, software package by Metrodata GmbH, 1999.

[10] S.Castrup, A comprehensive comparison of uncertainty analysis tools, 2004 Measurement Science

Conference Anaheim, CA.

[11] L.Mari, D.Petri, Propagating uncertainty through discrete time dynamic systems, proc. IEEE

International Workshop on Advanced Methods for Uncertainty Estimation in Measurement

(AMUEM), 23-26, 2006.

[12] International Organization for Standardization, GUM Supplement 1: Numerical methods for the

propagation of distributions.

[13] International Organization for Standardization, ISO 14253-2: Geometrical Product Specifications -

Inspection by measurement of workpieces and measuring equipment. Part 2: Guide to the estimation

of uncertainty in GPS measurement, in calibration of measuring equipment and in product

verification, 1998.

Figure Captions

Figure 1 – Tree resulting from the parsing of a simple function.

Figure 2 – Evaluation trace of a simple function (to be read bottom-up).

Figure 3 – AD-enabled evaluation trace of a simple monadic function.

20

Figure 4 – AD-enabled evaluation trace of a simple dyadic function.

Figure 5 – AD seeding for a simple dyadic function represented as a tree.

Figure 6 – AD seeding for a simple dyadic function represented as a directed graph.

Figure 7 – Four possible definition graphs for the same dyadic function.

Figure 8 – Definition graph of a monadic function, showing a case of the “hidden” covariances.

Figure 9 – Graph implementing the validator for the simple model Y=X1/X2

Figure 10 – Chart of (a) y=min(x1,x2) and (b) u(y) for x1[4.0,6.0] along the x-axis, x2=5.0, and u(x1)=0.1

and u(x2)=0.0.

Figure 11 – Chart of u(min(x1,x2)) in the case the “fuzzification factor” k% is equal to 50 (a) and 100 (b).

Figure 12 – Chart of (a) y=max(sin(x1),x2) and u(y) with k%=0 (b) and k%=100 (c) for x1[0.0,5.0] along

the x-axis, x2=0.0, and u(x1)=0.1 and u(x2)=0.05.

Figure 13 – The histogram distribution obtained by a Montecarlo sampling of min(x1,x2) with

x1~N(4.8,0.1) and x2=5.0.

Figure 14 – The histogram distribution obtained by a Montecarlo sampling of min(x1,x2) with

x1~N(4.9,0.1) and x2=5.0.

Acknowledgments

I warmly thank Prof. Dario Petri and Prof. Sergio Sartori, who have variously contributed to this work

with their expert and kind support.

21

	A computational system for uncertainty propagation of measurement results
	Abstract
	1. Introduction
	2. Automatic differentiation for uncertainty propagation
	3. Propagating uncertainties through graphs
	4. Validation
	5. On the definition of AD-aware elemental functions
	6. Conclusions
	Appendix: implementation strategy in the Java programming language
	References
	Figure Captions
	Acknowledgments

