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Abstract:  the  paper  introduces  and  formally  defines  a  functional  concept  of  a  measuring

system, on this basis characterizing the measurement as an evaluation performed by means of a

calibrated  measuring  system.  The  distinction  between  exact  and  uncertain  measurement  is

formalized in terms of the properties of the traceability chain joining the measuring system to

the primary standard. The consequence is drawn that uncertain measurements lose the property

of relation-preservation, on which the very concept of measurement is founded according to the

representational viewpoint. Finally, from the analysis of the inter-relations between calibration

and measurement the fundamental reasons of the claimed objectivity and intersubjectivity of

measurement are highlighted, a valuable epistemological result to characterize measurement as

a particular kind of evaluation.
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1. Introduction

In the last decades the concept of measurement has been modeled and formalized according to

the so-called representational viewpoint. As a particular method of evaluation, measurement has

been  understood  as  the  homomorphic  mapping  of  an  empirical  relational  structure  into  a

symbolic  relational  structure.  At  the  basis  of  the  representational  viewpoint  the  hypothesis

stands that  the  condition of being a homomorphism is  both necessary and sufficient  for an

evaluation to be accepted as a measurement. In the words of [1]: «the method of constructing

the homomorphism is precisely the measurement procedure».

Therefore the representational viewpoint assumes that:

evaluations  homomorphisms  measurements

The significance of this hypothesis becomes manifest in the process aimed at taking a non-

homomorphic evaluation and transforming it into a homomorphism, with the goal to faithfully

represent by symbols the empirical information on the attribute under evaluation [2].

Typical examples of such non-homomorphic evaluations are the judgments of preference among

alternatives  that  are  intended to conform to an ordinal  structure  but  factually  present  some
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intransitive  chains,  i.e.  sequences  of  the  kind  a1>a2>…>an>a1.  In  these cases  the  empirical

relational structure cannot be homomorphically mapped into any symbolic relational structure

characterized  by  a  linear  order. A transformation from a non-homomorphic  evaluation to  a

homomorphism leads here to linearize the empirical order by means of a normative intervention

in which the evaluator is forced to remove the intransitive preferences. The condition implied in

such transformations, and thus in the requirement of homomorphism, is then basically directed

to guarantee the consistency of the evaluation.

From an epistemic standpoint, the necessity of the condition of homomorphism seems to be well

founded, since a non-homomorphic evaluation could be hardly called a measurement. Critical is

however  the  sufficiency of  such  a  condition,  an  issue  concerning  the  very  meaning  of

measurement and its role of activity of knowledge acquisition and expression.

As  already  remarked,  the  representational  viewpoint  is  based  on  the  hypothesis  that  the

condition of homomorphism is not only necessary but also sufficient to define the concept of

measurement: we claim that the reason of this position is extrinsic, being referred to the fact that

those  who  mainly  contributed  to  the  development  of  such  a  viewpoint  were  behavioral

scientists.  In  the  context  of  the  social  sciences  a  transformation  from a  non-homomorphic

evaluation to a homomorphism can be indeed very meaningful, particularly from the normative

point of view, i.e. to help the subject in setting up an evaluation as a ‘correct’ measurement. On

the other hand, the deemed identity of homomorphic evaluations and measurements leaves some

of  the  specific  features  of  the  latter  unjustified  and however  unexplained.  «When you can

measure what you are speaking about, and express it in numbers, you know something about it;

but when you cannot measure it, when you cannot express it in numbers, your knowledge of it is

of  a  meager  and unsatisfactory kind:  it  may be the beginning of knowledge,  but  you have

scarcely, in your thoughts, advanced to the stage of science». Could this well-known statement

by Lord  Kelvin  be  referred  to  any homomorphic  evaluation?  The  epistemic  importance  of

measurement,  to  which  Lord  Kelvin  alludes,  derives  from  its  being  both  objective  and

intersubjective, two characteristics whose origin must be discovered outside the language and its

formalisms, directly in the operational component of the measurement itself.

Therefore our basic claim is that:

evaluations  homomorphisms  measurements

The purpose of this paper is to discuss and give a sound conceptual basis to this standpoint, and

accordingly to  propose a formalization of  measurement  as  a  specific  kind of  homomorphic

evaluation. This formalization will allow us to find the reasons to the claimed objectivity and

intersubjectivity of measurement in the adoption of a suitably calibrated measuring system and

the reference to a standard set suitably tied to a traceability chain, i.e. more or less directly
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referred  to  a  primary  standard.  Furthermore,  in  this  metrological-oriented  framework  the

presence of the uncertainty emerges as inherent to measurement, so that its causes and effects

will be discussed and formalized.

The concept of measurement will be introduced at first under the ideal assumption of absence of

uncertainty, to make the proposed formalization of the notions of measuring system, calibration,

and traceability chain easier to understand. Such concepts will be then extended to the general

case  of  uncertain  measurement,  thus  obtaining  an  overview  of  the  whole  framework  here

proposed.

2. The representational viewpoint of measurement: its conceptual 
basics and flaws
«The  modern  form  of  measurement  theory  is  representational:  numbers  assigned  to

objects/events  must  represent  the  relations  perceived  between  the  properties  of  those

objects/events»  [3].  The  formalization  usually  adopted  by  the  representational  viewpoint  to

express such concepts of ‘properties of objects/events’ and ‘relations between properties’ is a

set-theoretical one, that generalizes the notions of universal algebra and morphism.

A relational structure is an ordered pair X=<X,RX> of a domain set X and a set RX of relations on

X. The elements of RX can have different arities. In particular, the 1-ary relations are subsets of

X, and the n-ary operations on X (i.e. the functions  XnX) belong to RX as specific (n+1)-ary

relations. Given two relational structures X and Y, a homomorphism from X to Y is a mapping

m=<m,mR>, m:XY, where:

* m is a function that maps X into m(X)Y, i.e. for each element of the domain set there exists at

least one, but not necessarily only one, corresponding image element;

*  mR is a function that maps  RX into  mR(RX)RY such that  rRX,  r and  mR(r) have the same

arity, i.e.  for  each relation on the domain set  there  exists  one (and it  is  usually, and often

implicitly, assumed: and only one) corresponding image relation,

with the condition that rRX, xiX, if r(x1,…,xn) then mR(r)(m(x1),…,m(xn)), i.e. if a relation

holds for some elements of the domain set then the image relation must hold for the image

elements.

Relational structures can be then thought of as sets-with-constraints, and homomorphisms as

mappings among relational structures preserving such constraints.

As an example, let X=<X={x1,x2,x3}, RX={r}> being r={(x1,x2), (x2,x3), (x1,x3)} (remember that a

n-ary  relation  on  X can  be  expressed  as  a  subset  of  the  cartesian  product  set  Xn),  and

Y=<Y={y1,y2,y3,y4}, RY={s}> being s={(y1,y1), (y2,y2), (y3,y3), (y4,y4), (y1,y2), (y2,y3), (y3,y4), (y1,y3),

(y1,y4), (y2,y4)}. Given the following mappings from X to Y:
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- m1 such that m1(x1)=y1, m1(x2)=y2, m1(x3)=y3

- m2 such that m2(x1)=y1, m2(x2)=y1, m2(x3)=y1

- m3 such that m3(x1)=y1, m3(x2)=y2, m3(x3)=y1

then only m1 and m2 are homomorphisms (and the latter is a trivial one), since in the case of m3

r(x2,x3) but not s(m3(x2),m3(x3))=s(y2,y1).

Relational  structures and homomorphisms are the  basic  constructs  adopted to  formalize the

concept of measurement. A relational structure  E is called empirical if its domain set  E spans

over the thing states under consideration; a relational structure S is called symbolic if its domain

set  S spans over a  given set  of  symbols.  A homomorphism  m from an empirical  relational

structure  E into a symbolic relational structure  S is adopted to formalize an attribute taking

values in S when evaluated on a thing in E [4].

2.1. An interpretation and a critique of the representational viewpoint

On these bases the measurement procedures are interpreted as a ‘method of constructing the

homomorphism’. The emphasis in such a construction is on «the qualitative conditions under

which a particular representation holds» [1], i.e.  on the empirical relational structure and in

particular the qualitative relations defined in it (a short remark: ‘qualitative’ is usually adopted

in this case in opposition to ‘quantitative’, being considered quantitative the relations defined

among symbols.  Both are doubtful denotations).  The key point  is the requirement that  such

empirical relations should be  perceivable, and factually ‘perceived’ before measurement. Any

measurement would be based on the direct comparison of things, an assumption that is seldom

verified in the actual practice, and unnecessary from the theoretical point of view.

This  claimed  need  of  direct  perception  formally  corresponds  to  the  requirement  that  an

extensional definition is available for the relations in RE, i.e. rRE, where r is n-ary, eiE, it

is empirically known whether r(e1,…,en) or not. On the other hand, this is not sufficient (and in

the following we will suggest that it is neither empirically necessary) to define what should be

considered a meaningful homomorphism of E.

As  an  example,  consider  a  ‘directly  perceived’  empirical  order  relation  r on  the  domain

E={e1,e2,e3},  r={(e1,e2),(e2,e3),(e1,e3)}. Let  S={1,2,3} be the chosen symbol set. Together with

the  ‘order-preserving’  homomorphism  m:<E,{r}><S,{<}>  such  that  m(e1)=1,  m(e2)=2,

m(e3)=3, other homomorphisms can be defined, for example  m’:<E,{r}><S,{}> such that

m’(e1)=1,  m’(e2)=3,  m’(e3)=2  (the  fact  that  m’  is  actually  a  homomorphism  can  be  easily

verified).  The homomorphism  m’ appears to be unusual  because there  are some couples  of

elements of E not in relation r but whose images are instead in relation m’R(r) (for example not
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r(e2,e1)  whereas  m’R(r)(m’(e2),m’(e1)),  since  m’(e2)=2m’(e1)=1).  As  a  consequence,  some

properties of r, such as the asymmetry, are not preserved by m’.

In coherence to its extensional approach, the representational viewpoint eludes this problem by

implicitly specializing the definition of homomorphism and requiring that rRE, eiE, mR(r)

(m(e1),…,m(en)) if  and only if r(e1,…,en), thus forcing the biconditional implication that is not

present in the general definition. It can be easily shown that this condition is equivalent to the

intensional requirement that the same properties hold for the relations in E and S (neglecting the

presence of the so-called anti-homomorphisms: for example, an empirical strict order can be

homomorphically mapped into both ‘<’ and ‘>’). These ‘natural’ homomorphisms can be neatly

understood from a logical point of view by requiring that both E and S are models of the same

theory, here with the role of a measurement scale (for an introduction on the concepts of theory

and model, as defined in formal logic, and their application to characterize measurement scales,

see [1]).

The homomorphisms satisfying this condition will be called here  model homomorphisms, m-

homomorphisms for short. Therefore, formally:

evaluations  homomorphisms  m-homomorphisms

so that our basic claim becomes:

m-homomorphisms  measurements

It should be clear that our objections to the representational viewpoint are in fact not merely

terminological, in reference to the choice of denoting as homomorphisms what are in effect m-

homomorphisms,  and  refer  to  the  strategy  assumed  to  empirically characterize  the  m-

homomorphisms within the whole classes of the homomorphisms and evaluations. While the

check that  r(e1,…,en) implies  mR(r)(m(e1),…,m(en)) has a manifest significance (provided that

r(e1,…,en) is known, of course), the inverse check that mR(r)(m(e1),…,m(en)) implies r(e1,…,en)

seems rather an  ad hoc  technique to guarantee that  m is a m-homomorphism and not just a

homomorphism.

On the contrary, we suggest that the characterization of measurement is intensional, being based

on the knowledge available about the measurand before the accomplishment of the evaluation.

Such a  knowledge is  independent  of  the  availability  of  any extensional  information on the

relations in  RE. It is therefore correct that «the method of constructing the homomorphism is

precisely the measurement procedure», but the fact is that in the scientific and technological

practice the definition of a measurement procedure generally requires to set up a measuring

system (MS), and not to directly compare things with each other.
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2.2. Evaluation levels

Schematically, three levels of evaluations can be thus envisioned:

L1. the measurand is not identified or however a m-homomorphic comparison among things

cannot be performed; these can be called generic evaluations;

L2.  the  measurand  is  identified  but  a  MS for  it  is  not  available;  on  the  other  hand  a  m-

homomorphic comparison among things can be performed; these can be called m-homomorphic

evaluations;

L3. the measurand is identified and a MS for its evaluation is available and adopted; in some

cases a m-homomorphic comparison among things could be directly performed, but is more

usually obtained in indirect way through the comparison of the measurement results and the

back-propagation of the result, so that r(e1,…,en) whenever mR(r)(m(e1),…,m(en)); we claim that

these, and only these, are properly measurements.

As already discussed, the representational viewpoint seems to be mainly concerned with L2 and

the normative conditions leading to the procedural transformation from L1 to L2. To reach L3 a

suitable formalization for the concept of a MS must be obtained.

3. The formal concepts of measuring system and measurement

«For the most part, questions about physical measurement are regarded as being in the province

of  philosophy of  physics,  not  in  physics  itself  […] The construction and the calibration of

measuring devices is a major activity, but it lies rather far from the sorts of qualitative theories

we  examine  here»  [1].  On  the  opposite,  we  deem  the  theoretical  relevance  and  the

unavoidability of such a ‘major activity’ for the definition of an actual measurement theory:

measurement is an evaluation performed by means of a calibrated MS.

An operational concept of a MS calibration must be then introduced and defined. The suggested

interpretation  of  the  concept  presents  it  as  a  sort  of  counterpart  of  measurement,  as  the

following diagram sketches:

standard reference

measuring system

measured thing

measurement result

3.1. Reference relational structures

The formal concept of a MS is rooted on the notion of a reference  standard set (the term is

adopted to generalize the more usual ‘standard sequence’, to keep into account the algebraically

weak scales in which the concept of sequence is not meaningful). A standard set  A is a set of

6



thing states conventionally chosen by the operator with the aim of materializing his knowledge

on the measurand. The cardinality of A is related to the measurand resolution, i.e. the ability to

discriminate between thing states with respect to the measurand. A set of relations RA is defined

on A, conveying the information available on the scale in which the attribute is measured. Due

to the condition that the elements of A can be discriminated with respect to the measurand, no

equivalence relations belong to RA. Therefore RA= for nominal attributes, RA={a strict order}

for ordinal attributes, and so on.

The presence of one operation op in RA usually allows to constructively generate the standard set

A,  beginning  from  a  ‘reference  unit’  a through  a  sequence  of  compositions  2a=op(a,a),

3a=op(2a,a), … This procedure is not allowed if RA contains only ‘pure’ relations: in this case

(for example for nominal and ordinal scales) the standard set must be given in its extensional

form.

Such a basic concept of a standard set must be then specified to keep into account its algebraic

structure  and  the  fact  that  several  standard  sets  are  customarily  linked  with  each  other  to

constitute a traceability chain that joins the MS to the primary standard set.

Let Ai=<Ai,RAi>, i=1,..,n for a given n1, be called a i-ary reference relational structure (RRS)

whenever the whole sequence  A1,…,An fulfils the following three ideal conditions (note that

they will be subsequently relaxed, to keep into account the presence of some uncertainty):

condition 1: for each i=2,..,n the i-ary RRS Ai is defined in terms of the i1-ary RRS Ai1, i.e.

traced in reference to it, by requiring that there exists a mapping  i:Ai1Ai and that such a

mapping is a m-homomorphism. The corresponding function  i:Ai1Ai is called a ‘standard

comparison function’. The composition =2…n expresses the whole  traceability chain,

formalizing  the  condition  that  the  n-ary  RRS  An is  (indirectly)  defined  in  reference  to  the

primary RRS A1, and that the resolution of the primary standard set A1 is not worse than the one

of the n-ary standard set An, and in particular equal if the function  is injective;

condition 2: for each i=1,..,n a symbolic relational structure S is chosen so that for each RRS Ai

a homomorphism mi,  i=1,..,n, is defined from Ai into  S such that  mi is injective, i.e.  mi is an

isomorphism onto its image. This formalizes the possibility to integrally express the empirical

information maintained by the RRSs in symbolic terms;

condition 3: a ‘thing comparison function’  is defined from the set E of the thing states under

evaluation to the n-ary standard set An, :EAn. This formalizes the possibility to adopt An (and

indirectly  the  whole set  of  the RRSs  Ai belonging to  the  traceability chain,  up to  A1)  as  a

reference in the empirical comparison to the things to be evaluated. Since a direct perception of

the relations among things is  not  required here,   is  not  forced to be a homomorphism. In
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principle,  indeed,  no  relations  must  be,  and  could  be,  extensionally  known  on  E before

measurement.

3.2. A functional standpoint on measuring systems

For any given traceability chain , a MS is a system:

* embedding (either empirically or just formally) the RRS An;

* calibrated in reference to A1 by means of , as formalized by the homomorphism mn;

* able to empirically interact with the thing states E, as expressed by the function .

The  setup  and  usage  of  such  a  MS is  then  conceptually  a  (1+3)-step  operation  (note  the

denotation of the mappings between empirical states with Greek symbols, and of the mappings

involving symbols with Latin symbols):

step 0: choice of the primary RRS. An injective homomorphism m1 is defined from the RRS A1

into a given symbolic relational structure S (cf. the condition 2):

m1
A1 S

step 1: calibration. The homomorphism m2 is defined by means of the m-homomorphism 2 (cf.

the condition 1), by the condition that a’A2 such that a’=2(a), being aA1, m2(a’)=m1(a):

A1 S

A2

m1

2

m2

(in the case the function  2 is not injective, i.e.  if  in the transition from the primary to the

secondary standard set some resolution is lost, more than one element of A1 is mapped by 2 into

the same element of A2; in this case a suitable aggregation function, for example the average if

defined, must be adopted to compute m2(a’) from the set of the values m1(a)).

Such an operation is recursively repeated until the RRS An is reached and the homomorphism

mn is defined:

 

An-1  S 
 
 
 
An 

mn-1 

n 

mn 

This  homomorphism  formalizes  the  calibration  information  for  the  MS,  as  it  is  indirectly

obtained by the primary standard through the traceability chain;
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step 2: empirical interaction with the thing under measurement (data acquisition). The RRS An

is  put  in  interaction  with  the  thing  under  measurement  in  its  state  eE.  This  leads  to  the

selection of a specific element aAn, as formalized by the function a=(e) (cf. the condition 3);

step 3: symbolic selection (data presentation). Once calibrated as in step 1 and put in interaction

with the thing state as in step 2, the RRS An is adopted to select a symbol in S as the measurand

value: m(e)=mn(a=(e)):

An S

E

mn



m

where a=n(a’) for a given a’An1, and a’=n1(a’’) for a given  a’’An2, and a’’= … so that

m(e)=mn(n(n1(…(2(a’’’’)))))=(a’’’’),  being  a’’’’A1 an element of the standard set  of  the

primary RRS.

An equivalence relation eq is induced in  E by the function  such that  eq(e1,e2) if and only if

(e1)=(e2), i.e. the evaluated thing states are not distinguished with respect to the measurand.

Furthermore, via  any relation defined on An is induced on the quotient set E/eq, and therefore

indirectly on the set E itself: for each rjRAi a corresponding relation r’j is induced on RE such

that r’j(e1,…,en) if and only if rj((e1),…,(en)). This makes E=<E,{eq,r’j}> a relational structure

and the mappings  and m m-homomorphisms  and m. Hence:

An S

E

mn



m

Provided that a proper identifier ref is assigned to the RRS An (for example ‘Richter scale’, or

‘Celsius degrees’, or ‘millimeters’), a measurement result of the thing state e for the attribute m

is expressed as customarily as ‘m(e)=s ref ’ where s= mn((e)).

That measurement is formalized as a m-homomorphism is not a constraint on its definition, but

only a consequence of the fact that measurement is an operation based on a suitably calibrated

MS.

4. Calibration and measurement

This  formalization  of  a  MS  highlights  several  characteristics  of  the  connection  between

calibration and measurement. Both are operations implying a 3-placed relation: empirical states
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 empirical  states   symbols.  In calibration the known standard states are compared to the

unknown MS states to properly assign symbols to the latter. In measurement,  the unknown

measurand states  are  compared to  the  known MS states  to  properly  assign  symbols  to  the

former. Therefore calibration and measurement can be thought of as  inverse  operations. Re-

expressing the previous diagrams in the usual form of commutative triangles, indeed:

* calibration of the measuring system in 

reference to the standard set element a: 

aAn1, mn(a’)=mn(n(a))=mn1(a)=s:

An-1 S

An

mn-1

n mn

* measurement of the thing state e by 

means of the calibrated measuring system: 

eE, s=m(e)=mn((e)):

E S

An

m

 mn

Calibration can be then meaningfully expressed as the operation that empirically establishes a

relation between ‘instrument readings’, i.e. MS states, and symbols assigned to elements of the

standard set: for each element a of the standard set An1 with which the MS is put in interaction,

a couple <instrument reading, assigned symbol>=<n(a),mn1(a)> is defined. The ‘calibration

function’  mn is extensionally obtained by the set of such couples, that can be visualized in a

calibration diagram as a curve that is parametric with respect to the elements aAn1:

instrument readings

assigned symbols

n(a)

mn 1(a)

Once  available,  the  same  diagram  can  be  applied  to  measurement,  through  a  suitable  re-

interpretation of its meaning:
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instrument readings

measurand values

(e)

mn(e)

As a synthesis, once the MS has been calibrated:

1. the thing in its current state e is put in interaction with the MS, as formalized by the function

; the empirical result (e) is a (non-calibrated) instrument reading;

2. the instrument reading is mapped into a measurand value, as formalized by the calibration

function mn.

This  procedure  is  based  on  the  hypothesis  of  the  MS  stability in  the  period  between  the

calibration and the measurement: if a given thing state  e cannot be empirically distinguished

from a given standard state a with respect to the measurand, then the two states must produce

the same instrument reading,  (e)=n(a).  A positive knowledge that  some cause,  internal  or

external to MS, is preventing the confirmation of this hypothesis compels to re-calibrate the

MS.

4.1. Relations between calibration and measurement

In spite of such analogies, a basic asymmetry between calibration and measurement exists.

While measurement is a single empirical operation aimed at assigning one symbol to the current

thing state, calibration typically requires several assignments to be performed, in the extreme

case one for each state of the MS. This is manifest in algebraically weak scales, in which to

calibrate a MS the function  n has to be applied to each element of the standard set  An1 (i.e.

each  element  of  standard  set  An1 must  be  put  in  empirical  interaction  with  the  MS under

calibration) so that the calibration function mn cannot be defined but in extensional way as the

whole set of couples <n(a),mn1(a)>. In algebraically stronger scales, in which the standard set

is constructively generated by the repeated application of an operation  op to the unit element a

(so  that  the  standard  set  elements  can  be  expressed  as  2a=op(a,a),  3a=op(2a,a),  …,  as

previously considered), the calibration could be in principle performed as a single empirical

operation by exploiting the structure of the scale, so that  mn(n(ja))=jmn(n(a)) for  j=2, 3, …

This expression can be considered the calibration-oriented version of the usual definition of

ratio scale, i.e. the invariance for affine transformations y=x, indeed depending on the single

parameter : the only empirical operation required in this case would be the identification of the
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instrument  reading  n(a)  relative  to  the  unit  element  (a  similar  conclusion  is  achieved  for

interval  scale,  that  would  require  two  empirical  operations  for  calibration,  as  two  are  the

parameters on which its characteristic transformation, y=x+, depends). Therefore:

instrument readings

assigned symbols:

      n(a)           n(2a)          …

1

2

…

This holds only in the ideal case, i.e. for a MS whose behavior is represented (in the case of a

ratio scale) by a zero-crossing straight line in the calibration diagram. More often, a realistic

identification of the MS recognizes in it several causes of non-linearity and offset from zero.

The effects of such causes can be ascertained by carrying out a ‘trial’ calibration of the system

as it would be ideal (i.e. by means of the single determination of n(a)), and then revealing that

for at least one standard state  ja the symbol  mn(n(ja)) is different from  mn1(ja). This would

highlight the need of an extensional definition of the calibration function, for example resulting

in a diagram as:

instrument readings

assigned symbols

     n(a)          n(2a)

1

2

in which the non-linear part of the curve represents the correction on the MS behavior obtained

with  a  pointwise  calibration  (the  example  in  the  diagram  shows  a  case  in  which,  as  the

instrument reading values increase, the measurand values that would be obtained according to

the hypothesis of linearity are lower than the ones achieved by a pointwise calibration of the

MS. In those points the calibration curve correspondingly increases to compensate this effect of

reduced sensitivity to high values).
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It is important to remark that it is  precisely such a correction that allows a suitably calibrated

MS  to  preserve  the  scale  transformations,  i.e.  to  implement  the  scale-characteristic

homomorphisms, in measurement.

A simple example can help us to illustrate this point. A MS for a ratio scale measurand has been

calibrated as it  would be ideal,  i.e.  by means of the single determination of the instrument

reading  for  a,  so  that  n(a)=0,5  instrument  reading  units  (i.r.u.)  and  of  course

mn(n(a))=mn1(a)=1  measurand  units  (m.u.).  Afterwards  the  MS has  been  applied  to  three

distinct  thing  states  e1,  e2,  e3,  and  the  three  instrument  readings  a’1,  a’2,  a’3 have  been

correspondingly obtained, such that  a’i=(ei)=i i.r.u. for  i=1, 2, 3. The hypothesis of ideality

would lead to the assignments mn(a’i)=2i m.u. If, on the other hand, the MS is calibrated in a

pointwise way by means of the whole standard set, it could empirically occur that n(2a)=1 i.r.u.

and  n(4a)=2 i.r.u. (as in the ideal case) but  n(8a)=3 i.r.u. Therefore, because of a reduced

sensitivity  of  the  MS around 8a,  the  standard  set  element  corresponding to  the  instrument

reading 3 is not 6a but 8a. This implies that e2=2e1 but e3=4e1.

thing states ei Instrument

readings (ei)

(in i.r.u.)

measurand

values m(ei)

(‘ideal’ case)

(in m.u.)

measurand

values m(ei)

(‘real’ case)

(in m.u.)

thing states

(ratios to e1)

e1 1 2 2 1
e2 2 4 4 2
e3 3 6 8 4

4.2. Epistemological consequences

When adopted in measurement, a calibrated MS preserves the scale transformations, as shown

in the last two columns of the previous table. In this perspective the mentioned purpose of the

representational  viewpoint  to  transform non-homomorphic  evaluations  into  homomorphisms

could  be  interpreted  as  an  extension  of  the  very  concept  of  calibration  to  the  context  of

behavioral sciences.

On the other  hand,  the  epistemic characteristics  of  objectivity  and intersubjectivity  that  are

usually recognized to measurement results cannot be ensured by calibration alone. Complete

objectivity means here independence of the environment, and in particular the operator, that is

part of the environment, so that the measurement results convey descriptive information only on

the measured thing, as it has been individuated with respect to the environment itself. Complete

intersubjectivity means here non-ambiguity of the measurement results, so that their meaning, as

expressed by the reference to the adopted RRS [5],  can be integrally communicated among

distinct  subjects.  The fulfillment of  both these characteristics depends on the adoption of a

proper MS, and in particular:

13



*  objectivity  implies  that  the  MS is  able  to  discriminate  the  measurand  from the  various

influence  quantities,  so  that  the  acquisition  component  of  the  MS is  sensitive  only  to  the

measurand;

* intersubjectivity implies that the MS is able to refer the measurand to the primary standard, so

that all the measurements expressed in terms of that standard are comparable with each other.

Therefore such characteristics cannot be considered as pre-requisites for an evaluation to be

called  a  measurement,  but  a  target  (and plausibly  the  ultimate  target)  for  the  work  of  the

measurement scientists and technologists [6].

A basic cause prevents the complete achievement of both objectivity and intersubjectivity of

measurement results: the empirical presence of uncertainty in the measurement process.

5. The role of uncertainty

Calibration and measurement share a twofold nature of empirical and linguistic operations, and

as  such  they  inherit  the  characteristics  of  both.  «There  are  certain  human activities  which

apparently have perfect sharpness. The realm of mathematics and of logic is such a realm, par

excellence. Here we have yes-no sharpness. But this yes-no sharpness is found only in the realm

of things we say, as distinguished from the realm of things we do. Nothing that happens in the

laboratory corresponds to the statement that a given point is either on a given line or it is not»

[7].

The prominent characteristics of the  linguistic component of calibration and measurement, as

expressed by the homomorphisms mi, are its ‘yes-no sharpness’ (as far as entities such as fuzzy

subsets are not used to formalize measurement results) and the conventionality of the standard

set elements in the primary RRS and the associated symbols. On the other hand, the empirical

component, as expressed by the homomorphisms i and  , is ‘yes-no sharp’ only in the ideal

case,  as  the  typical  presence  of  some  non-exactness  should  be  realistically  recognized.

Uncertainties emerge in boundary cases, in which the alternative between ‘yes’ and ‘no’ cannot

be sharply discriminated.

The concept of uncertainty in measurement, its role and implications have been widely covered

in  the  scientific  literature  (for  the  Author’s  position,  cf.  [8])  and  the  procedures  for  its

expression are matter of international Standards (cf. the Guide to the expression of uncertainty

in measurement (GUM) [9]). On the other hand, the formalization of uncertainty in the context

of measurement theory seems to be still an open issue. The framework that has been introduced

in the previous Sections enables us to present a proposal in this regard.

In  agreement  with  the  GUM,  a  measurement  result  can  be  expressed  as  a  couple

<measurand_value,  uncertainty_value> to make its uncertainty explicit. The GUM assumes a
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neutral standpoint with respect to the meaning of the term  uncertainty_value,  allowing both

statistical (standard deviation of the, possibly unknown, distribution of which measurand_value

is the estimated average: ‘standard uncertainty’) and set-theoretic (proportional to the width of

the  interval  of  which  measurand_value is  the  center  point:  ‘expanded  uncertainty’)

interpretations,  and  both  statistical  (‘type  A’)  and  non-statistical  (‘type  B’)  methods  for  its

evaluation. The same position will be adopted here, although it is recognized that different, and

somehow more general, representations could be chosen, for example subsets, or fuzzy subsets,

or  probability  distributions.  All  of  these are more widely applicable  than the representation

suggested by the GUM, that can be employed only for algebraically strong scales, in which the

concept of standard deviation is meaningful.

5.1. Uncertain calibration and measurement

All  the  empirical functions  involved in  both calibration and measurement,  i.e.  the  standard

comparison functions i and the thing comparison function , are subject to uncertainty. Their

results  should  be  accordingly  expressed  as  couples  <measurand_value,  uncertainty_value>.

Therefore the diagrams introduced in Section 3.2 require to be generalized as follows (double

arrows  indicate  ‘uncertain  mappings’;  the  reader  will  note  that  an  overloaded  notation  is

adopted  in  the  following,  the  same  symbols  referring  to  both  non-uncertain  and  uncertain

mappings):

1. assignment of the primary standard:

A1 S S
m1

so that aA1, m1(a)=<s,u(s)>, being s and u(s) the symbols associated with the element a and

its  related  uncertainty  respectively.  The  term  u(s)  highlights  the  presence  of  the  so-called

intrinsic uncertainty, i.e. an uncertainty pertaining to the very definition of the measurand and

its materialization by means of the chosen primary standard. Such terms u(s) (in principle one

for each element of the standard set as it is mapped into S) are typically estimated on the basis

of the operator’s knowledge on the measurand;

2. calibration of the secondary standard:

    A1        S S

A2  A2

m1

2

m2

Two  distinct  sources  of  uncertainty  are  present  in  principle  here:  in  combination  with  the

intrinsic uncertainty of the primary standard, the effects of a non-ideal behavior of the empirical

component of the calibration must be taken into account, this second component being what has
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been classically called the ‘instrumental error’ [10]. If such an error is null, i.e. in the case of

ideal behavior of the system under calibration, a single instrument reading is obtained from any

element of the standard set, so that  aA1,  m2(a’)=m2(2(a))=m1(a)=<s,u(s)>. In this case the

uncertainty of the mapping 2 accounts for the fact that more than one instrument reading can be

empirically  obtained  from  any  single  element  of  the  standard  set,  so  that  aA1,

2(a)=<a’,u(a’)>.

In the  general  case,  the conjoint  presence of  intrinsic and instrumental  uncertainty must  be

assumed, and the issue arises of how to combine them to keep into account their contribution to

the global uncertainty (for the sake of simplicity a set-theoretic interpretation will be assumed in

the following discussion, so that any couple <x,u(x)> identifies an interval whose center and

half width are x and ku(x) respectively, for a given k>0. A general treatment of the possible rules

of  combination  between intrinsic  and  instrumental  uncertainty, independent  of  any  specific

interpretation for the couples <measurand_value,  uncertainty_value>, is beyond the scope of

this paper, if even possible. For a discussion on this point see [8]).

The instrumental uncertainty u(a’), as obtained by the function 2, is still negligible with respect

to the intrinsic uncertainty u(s) whenever ai,ajA1, if  m1(ai)m1(aj)= then 2(ai)2(aj)=,

i.e.  the  intervals  of  the  instrument  readings  corresponding  to  distinguishable  standard  set

elements do not overlap. In this case the instrument readings can be partitioned into ‘groups of

mutually compatible values’, i.e. distinct intervals whose elements are pairwise disjoint, so that

the compatibility relation among elements belonging to the same interval is transitive, and then

actually an equivalence [11]. This condition is obtained by a suitable coupling of the chosen

primary standard and the instrument to be calibrated by means of it, for example by reducing the

number of elements in the standard set and correspondingly increasing their mutual separation,

a  choice  highlighting  the  trade-off  between  measurand  specificity  and  uncertainty, the  two

components  by  which  the  measurement  information  is  expressed  [8].  If  the  instrumental

uncertainty is negligible with respect to the intrinsic uncertainty, the terms m2(a’) can be again

computed as  in the  ideal  case:  aA1,  m2(a’)=m2(2(a))=m1(a)=<s,u(s)>,  i.e.  the calibration

leads to associate each instrument reading in the interval 2(a) with the same interval m1(a).

On  the  other  hand,  in  the  typical  experimental  situation  the  instrumental  and  intrinsic

uncertainties are at least comparable. As a consequence, the same instrument reading a’ could be

obtained from more than one standard set element. From a theoretical point of view the case is

straightforward: a’A2, let A1,a’ be the interval of A1 of such standard set elements. Then m2(a’)

is computed as the set-theoretical union of the intervals  m1(a) for each  aA1,a’. The difficulty

stands in  the  fact  that  this  computation requires  the  mapping  2 to  be inverted:  instead  of
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applying each standard set element and observing the related instrument reading(s), the standard

set elements should be found from which any given instrument reading could be generated, a

strategy that is clearly cumbersome from the operative point of view;

3. calibration of the MS, i.e. n-ary standard:

 

    An 1         S S 
 
 
 
An  An 

m n 1 

n 

mn 

What has been said for the calibration of the secondary standard can be recursively applied to

the calibration of all the standards in the traceability chain. It can be noted that each step of the

chain realistically introduces some instrumental uncertainty, so that aA1 the interval (a) of

the readings (indirectly) generated by the standard set element  a in the MS is wider than the

interval  2(a)  of  the  readings  (directly)  generated  by  the  same standard  set  element  in  the

instrument  adopted  as  secondary  standard  (or,  equivalently, the  intervals  mn((a))  are  more

overlapped with each other than the intervals m1(a)). The whole process of calibration leads to

associate each MS instrument reading with an interval of symbols in S. This information can be

visualized in a calibration diagram as a strip that is parametric with respect to the elements

aAn1 (although from different, and non formal, premises, this is precisely the conclusion of

[12]):

instrument readings

assigned symbols

n(a)

mn 1(a)

4. measurement:

 An  An        S S

    E

m n



m

The  uncertainty  identified  during  the  calibration  must  be  combined  with  the  experimental

uncertainty that the MS exhibits during its usage for thing comparison. Indeed any given thing
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state  eE can generate more than one instrument reading, the interval of such readings being

formalized as a couple  (e)=<a,u(a)>.  eE, let  An,e be the interval of  An of these instrument

readings. Hence  m(e) is computed as the set-theoretical union of the intervals  mn(a) for each

aAn,e. Again, this information is effectively visualized in a calibration diagram:

instrument readings

mn(e)

measurand values

(e)

highlighting the fact that the presence of this experimental uncertainty increases the uncertainty

to be assigned to the measurement results.

5.2. The implications for the representational viewpoint

When  the  exactness  of  the  measurement  can  be  assumed,  the  mappings  involved  in  MS

calibration inherit the property of being relation-preserving functions, i.e. homomorphisms, in

their materialization in the MS. The previous discussion shows that the relation-preservation is

maintained also in the more general situation in which the instrument readings can be arranged

in  groups  of  mutually  compatible  values:  in  this  case  the  mappings  i and  mi are  still

homomorphisms, with the trivial condition that their range set is extended to keep into account

the presence of the term  uncertainty_value.  On the other hand, in presence of notable non-

exactness  distinguishable  standard  set  elements  generate  overlapping  intervals  of  possible

instrument readings, so that the transitivity of the involved relation cannot be assured, and the

mappings i and mi lose the property of being homomorphisms. This feature could be adopted as

an operational criterion to define the concept of ‘notable non-exactness’:

a MS calibrated in reference to a primary RRS is said to introduce a notable non-exactness

whenever the relations in the RRS are not preserved by the MS application.

This emphasizes the need to further detail the conceptual hierarchy that has been previously

introduced:

evaluations  homomorphisms  measurements

(we are neglecting the distinction between homomorphisms and m-homomorphisms, inessential

here), and that must be transformed into a 2-dimensional structure:
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   B. homomorphisms 
 
 
A. evaluations     D. exact 

           measurements 
 
 
   C. notably non-exact 
        measurements 

scale definition 

adoption 
of a MS 

implementation of the homomorphisms 
by means of an (ideal) MS 

enhancement of the MS 

Once more, the diagram makes clear the distinct, and somehow opposite, paths to measurement

usually followed by social and behavioral scientists (AB and more rarely  D) vs. natural

scientists and engineers (AC and when empirically possible D). If taken in rigorous terms,

the  representational  viewpoint  would  oblige  to  consider  that  those  measurements  that  are

notably  non-exact  (plausibly  a  huge  fraction  of  the  measurements  performed  by  natural

scientists and engineers) are not ‘measurements’ at all!

6. Conclusions

In this paper the standpoint has been presented and discussed that measurement is an evaluation

performed by means of a calibrated measuring system (MS). This manifestly contrasts with the

representational viewpoint, that instead emphasizes scale consistency conditions.

A functional  concept  of  MS  has  been  formally  defined,  distinguishing  between  the  ideal

condition of exactness and the more general situation in which the presence of both intrinsic and

instrumental uncertainty is taken into account in its consequences. It has been shown that in the

former case the requirement of scale definition is empirically embedded in the MS and therefore

is fulfilled by the simple usage of the MS itself, that plays the role of a relation-preserving

device. On the other hand, when the instrumental uncertainty is not negligible with respect to

intrinsic  uncertainty  the  mapping  materialized  by  the  MS  loses  the  property  of  relation-

preservation because of the non-transitivity of the relation induced on the measurement result

set by the MS application. Furthermore, in this case a complete calibration, leading to establish

both a  measurand value and an uncertainty degree for  each instrument  reading,  becomes a

cumbersome operation: that is why it is seldom performed, leaving to the operator the task of

expressing the uncertainty on the basis of his knowledge and experience. On the other hand, the

increasing diffusion of intelligent MSs, that should be able to produce complete measurement

results (therefore including uncertainty estimates) in a fully automated process, stimulates the

effort of defining standardized procedures to derive and express uncertainty, such as the one

sketched here.
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Finally, from the analysis of the interrelations between calibration and measurement the claimed

objectivity  and  intersubjectivity  of  measurement  have  been  justified  in  terms  of  the  MS

structure and characteristics, a valuable epistemological result to characterize measurement as a

particular kind of evaluation.

A glossary of the notation used
MS: measuring system (introduced in the Section 2.1)
RRS: reference relational structure (Section 3.1)
X=<X,RX> generic relational structure of a domain set X and a set RX of relations on X 

(Section 2)
m=<m,mR>, m:XY homomorphism from a relational structure X to a relational structure Y, such that 

m:XY and mR:RXRY (Section 2)
E=<E,RE> empirical relational structure (Section 2)
S=<S,RS> symbolic relational structure (Section 2)
Ai=<Ai,RAi> i-ary reference relational structure (Section 3.1), so that:

A1: primary standard set
 An: reference relational structure embedded in the measuring system
i:Ai1Ai standard comparison homomorphisms (Section 3.1)
=2…n traceability chain (Section 3.1)
mi:AiS calibration homomorphisms (Section 3.1)
:EAn thing comparison function (Section 3.1) and:

:EAn: corresponding homomorphism (Section 3.2)
m:ES symbol selection function (Section 3.2) and:

m:ES: corresponding homomorphism (Section 3.2)
<s,u(s)> measurement result, being s the measurand value and u(s) its uncertainty 

evaluation (Section 5.1)
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