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Abstract: The spread of the measurement results, taken in supposedly identical conditions,
is a well known fact occurring in all the experiments. The traditional interpretation is based on
the assumption of a “true value” for the measurand and of “errors” that cause the observed
variability. More recently the non-exactness of the measurement results has been understood
in terms of their uncertainty, and a specific procedure to derive the uncertainty of measurands
in the case of indirect measurement has been proposed by several standardization bodies, as
formalized  in the “Guide to the expression of uncertainty  in  measurement”.  This  work is
aimed at critically analyzing the foundations of the notion of uncertainty in measurement and
its novelty with respect to the previous conceptions,  also highlighting the reasons of both
adequacy and insufficiency of the mentioned Guide.
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1. NATURE AND REPRESENTATION OF THE UNCERTAINTY

1.1. The uncertainty in measurement is a relatively recent issue …
Although men measure since long time and with many different  purposes,  the need to

evaluate and formally express the non-exactness of the measurement results is a relatively
recent issue. At least two distinct reasons can be suggested for this apparent anomaly. On one
hand, whenever it is agreed to report the results with a sufficiently low number of significant
figures,  as  it  is  customary  in  commerce  and  many  practical  purposes,  the  measurement
appears as actually repeatable. On the other hand, the traditional metaphysical belief that “the
numbers are in the world”, strengthened by the increasing success of the infinitesimal analysis
during the last three centuries, grew in the myth of the single-valuedness of the measured
quantities. From these complementary reasons the apparently counterintuitive conclusion can
be reached that the experimental  variability  of the measurement  results  is not a generally
observed (or at least reported …) fact.

It is worth to remark that the topic of the evaluation and representation of the uncertainty
of measurement results has recently received a specific attention by a wide audience, due to
the  publication  in  1993 of  the  “Guide  to  the  expression  of  uncertainty  in  measurement”
(GUM) [1], the result of the coordinated efforts of several international standardization bodies
(cf. Section 2.2). While aimed at generally analyzing the topic, our analysis will then maintain
the GUM as a reference, to discuss its usefulness and to highlight its merits and critical points.

1.2. The reasons
The fact that the repeatability of the measurement depends on the number of significant

figures  reported  in  its  results  highlights  the  relevance  of  the  linguistic  component  of  the
operation. Measurement results are indeed specific linguistic descriptions and as such they
inherit the general properties of these descriptions, in particular the existence of a relation
between the degrees of specificity and certainty of the description itself.

Consider, for example, the two descriptions A=“this is a book” and B=“ this is a 120 page
book”, both pronounced while indicating the same object. B logically entails A and therefore



is more specific than it. As a whole, B is however less certain, i.e., more uncertain, than A.
The less the descriptions produced by an observation are specific, the more the observation
itself is repeatable. The need to recognize and formalize the presence of a non null uncertainty
arises only when the descriptions reach a sufficiently high degree of specificity.

In this view the history of the past centuries exhibits a seemingly paradoxical situation:
«when we look to earlier times [before XIX century] for the connection between numbers
stated and observations made, historians are even more puzzled. Galileo may have been the
first to think about averages, and it was a long time until the arithmetic mean -- averaging --
was a commonplace for experimenters. Gauss had provided a theory of error by 1807, and
astronomers  made  use  of  that.  Although  all  modern  physical  measurements  demand  an
indication of error, physics outside of astronomy did not report estimates of error until the
1890s (or later)» [2].

Measurement results have been thus traditionally reported as both highly specific (i.e., as
numbers with many significant figures) and completely certain, and this although in a typical
continuous probability distribution any single value would have only an infinitesimal degree
of certainty.

1.3. The hypothesis of the true value
Among the different hypotheses that can be adduced to justify a posteriori this situation,

one can be highlighted as particularly meaningful: from the methodological intent of making
the  scientific  results  quantitative,  an  idealistic  philosophy  has  believed  to  derive  the
ontological  assumption  that  measurable  quantities  are  characterized  by  a  single,  thus
maximally  specific,  “true  value”.  As  a  consequence,  any  discrepancy  between  the
measurement  results  and  the  measurand  true  value  has  been  considered  as  an  “error”,
accounting for this difference and as such minimized as far as possible. It is now more and
more commonly recognized that these concepts cannot be maintained against an operational
analysis requesting to identify a procedure aimed at determining the true value of a given
measurand [3]. The more and more accepted shift from “error” to “uncertainty” is then more
than purely  terminological,  and highlights  the  recognition  of  a  different  epistemology  for
measurement. In this regard the position of the GUM seems to be agnostic («the terms “value
of a measurand” and “true value of a measurand” are viewed as equivalent» so that «the term
“true value” is not used»), but is substantially still classic (any measurand is «characterized by
a unique,  invariant  value»).  The criticality  of  this  position  emerges  when considering the
following two statements:

“at the instant of the measurement the thing is in a definite state”

and:

“at the instant of the measurement the measurand has a definite value”

Traditionally such statements would be plausibly considered as synonymous, whereas their
conceptual  distinction  is  a  fundamental  fact  of  metrology:  the  former  represents  a  basic
assumption  of  the  measurement  (neglecting  here  the  issues  related  to  the  role  of  the
measurement  in  quantum  mechanics),  while  the  latter  is  epistemically  unsustainable  and
however  operationally  irrelevant.  Measurement  results  are  linguistic,  and  not  empirical,
entities: what in the measurement is determined, and therefore considered pre-existing, is the
thing  state,  and  not  the  measurand  value,  that  is  instead  assigned  on  the  basis  of  the
instrument reading and the calibration information.

1.4. Intrinsic uncertainty and single-valuedness
The  fact  that  measurement  results  are  linguistic  constructs  has  a  second,  fundamental

consequence. Any measurement result includes the specification of a measurand, that must be



thus defined a priori and then suitably expressed. This linguistic specification is only a partial
description  of  the  thing  state,  resulting  in  an  under-identification  of  such  a  state,  that
maintains the unavoidable vagueness accounting for the essential distinction of «the realm of
things  we say from the  realm of  things  we do» [4]  (operatively  the  reasons are  various,
including the lack of specification and/or control of all the relevant influence quantities and an
insufficiently documented and/or controlled traceability chain). It is precisely the presence of
such  a  vagueness,  usually  called  “intrinsic  uncertainty”  in  metrology,  that  excludes  any
meaningfulness for the assumption that the measurand «to be invariant and to have a unique,
fixed value» as instead the GUM assumes.

On the other hand, this ontological conclusion has no direct implications with the linguistic
remark that a value for the measurand be possibly formalized as a singleton (i.e., a subset
whose cardinality  is  1),  an option whose usefulness is  manifest  whenever some symbolic
processing  is  needed  (the  mathematics  of  intervals,  or  subsets,  or  fuzzy  subsets,  …  is
overwhelmingly  more  complex  than  the  usual  one  for  scalars).  Again,  this  is  related  to
linguistics, and not to empirical facts: part of the measurand definition, to be made before the
measurement, is indeed the decision of which set of values to adopt. The complete specificity
of the measurement result, i.e., the fact that the assigned value is a singleton, depends on such
a set (so that if the set {“high”, “medium”, “low”} is chosen, a measurement result specifying
a “medium” length would be maximally specific …).

1.5. The expression of non-exact measurement results
Once acquired, the empirical information on the measurand can be represented by suitably

modulating  its  specificity  and  certainty,  whose  combination  formalizes  the  non-exactness
degree  of  the  measurement  result.  Therefore  the  same expression,  as  the  traditional  xy,
admits two distinct, and actually opposite, meanings:

M1:  the  measurand  value,  the  singleton  x,  is  maximally  specific  but  uncertain,  with
uncertainty y;

M2: the measurand value, the interval [xy,x+y], is not completely specific but certain

(an observation on M2, that is sometimes misunderstood in its interpretation. According to
M2 the measurement result is the interval as a whole, and as such its certainty is considered so
high, e.g., 95% or higher, that it is dealt with as practically certain. Given this interval, each of
the singletons belonging to it is actually uncertain, and maximally specific. But this implies a
swap to M1).

The GUM allows in principle both these interpretations. While focusing on M1 and in this
context presenting its basic results (cf. Section 2.3), it introduces a simple procedure to re-
express a measurement result in the form of a confidence interval, i.e., according to M2 (cf.
Section 2.4). The qualifying (and weak, in some sense) point of this approach is the complete
subordination  of the M2 representation  to the M1 one:  indeed the GUM assumes that  an
interval can be computed only from a couple (singleton, uncertainty value). This prevents the
adoption of further, non statistical, representations, such as those based on fuzzy set theory.

The  fact  that  the  measurement  results  are  expressed  as  non-exact  (either  specific  but
uncertain, or non-specific but certain, or both non-specific and uncertain) has a fundamental
consequence on the way they can be compared with each other to  ascertain whether two
results identify the same measurand or not. While in the exact case such a comparison is
performed in terms of the identity  of the measurement  results,  in  the non-exact  case this
criterion appears too exigent. The compatibility of two results is indeed guaranteed by weaker
conditions (cf. Section 3.1), that maintain the reflexivity and symmetry but in general relax
the transitivity of the comparison relation [5]. This highlights an inadequacy of the current



axiomatic  foundations  [6],  that  formalize  measurement  as  a  homomorphism  between
relational structures, i.e., a function mapping empirical states into symbols and preserving the
empirical relations so that they are expressed by measurement results. Although the GUM
does  not  deal  with  this  issue,  its  practical  importance,  e.g.,  in  standard  comparison,  is
manifest.

A  further  insufficiency  of  the  GUM  and  other  approaches  aimed  at  expressing  the
uncertainty in measurement (cf. Section 2.5) has to be remarked, related to their inability to
cover the results of measurements performed in non-ratio (or interval) scales, as they appear,
e.g., in ordinal evaluations. In such cases the very concepts of average, standard deviation,
interval, … are not defined, and weaker, i.e., more general, procedures must be investigated.

1.6. The need for an ethic of metrology
It is not the empirical reality that imposes a value for the measurand, pre-existing to the

measurement and determined by means of it (and then “true” as far as close to the “real”
value).  A measurand  value  must  be  assigned  by  the  operator,  by  means  of  the  suitable
application of a measuring system, on the basis of the goals for which the measurement is
performed, and it results adequate (and not “true”) if it  meets such goals, as expressed in
terms  of  a  given  minimum  specificity  and  maximum  uncertainty.  By  means  of  the
combination of these two parameters the operator is able to express an index of the quality of
the measurement result. That is why no method for evaluating the measurement uncertainty
can be a «substitute for critical thinking, intellectual honesty, and professional skill.» Indeed
«the quality and utility of the uncertainty quoted for the result of a measurement ultimately
depends on the understanding, critical analysis, and integrity of those who contribute to the
assignment of its value» [1]. The same, of course, holds more generally for the assignment of
a measurement result, thus including the measurand value. 

2. THE EVALUATION OF UNCERTAINTY

2.1. The theory of random errors
In the classical theory of errors any instrument reading x was considered as the result of a

combination between the value x0, that would have been obtained by a “perfect instrument”,
and the effect  , a “random error” produced by several small different sources, due to the
actual instrument performance, randomly varying both in sign and amplitude. When repeating
the same measuring procedure, even with the same instrument and the same environment and
operating conditions, different readings would be obtained. Because of this random behavior,
a statistic model was assumed for , assigning to it a Gaussian probability distribution (PD),
with zero mean. Then the mean x= E(xi), obtained by a finite number n of repeated readings xi

of the same measurand, was considered as the best attainable result to express the measurand
value. Its dispersion was expressed by different parameters, ranging from the average of the
absolute deviations  xixup to the estimated standard deviation (SD) of the mean  s =  s(x),
given by:

s = (1)

These formulas were not always used in practical applications, mainly because of a lack of
sound foundation and general agreement on their usage. For example, some old textbooks
noted that generally the unknown systematic errors were larger than the random ones and it
was therefore «rarely useful to perform complicated calculations» (especially when made by
hand or by a sliding rule)  to evaluate  random errors. On the contrary, in many cases the
assumed  Gaussian  PD  was  used  to  characterize  the  random  error   as  a  function  of  s,
corresponding to the amplitude of the interval around the mean value inside which the value



x0 could be found, with a given probability (or “confidence level”). The most commonly used
values have been a “probable error” of 0,68 s for a confidence level of 50%, an interval s for a
confidence level of 68%, or 2 s for a confidence level of about 95%. In the general case a
functional relation y = f(x1, x2, …, xN) is known and the random errors (xi) are available, the
random error (y) of y was computed from the (xi) by considering (y) as a differential of the
function f, and the following expression was generally derived:

(y) = (2)

such a value being defined as the limit absolute error, describing the “worst possible case” in
which all the sources were supposed to produce errors with the same sign.

It was however difficult to separate the sources of random errors from those of systematic
ones, as the randomness of a source depends on the operating procedure: this is particularly
important in the case of repeated readings of the same instrument. When successive readings
are taken in a short time, so that the influence quantities can be supposed to remain constant,
only a part of the instrument random errors are present (like resolution, quantization, noise,
reading uncertainty, friction between moving parts, …). The concerned dispersion expresses
in this case the repeatability  of the instrument  readings.  When using an instrument  under
different conditions of its influence quantities, their effects had to be considered as further
sources of random errors, superimposed to the previously mentioned ones. When comparing
two different instruments of the same type, the possible differences in their calibrations should
also  be  considered;  in  this  case  it  was  common  to  analyze  the  topic  in  terms  of  the
reproducibility of the measurement results.

2.2. Establishment of a Standard
The necessity of a common way for expressing uncertainty was urgently posed when a

strict  co-operation  was  being  established  among  the  national  calibration  laboratories  in
Europe,  about  25  years  ago.  To  build  up  and  maintain  a  mutual  confidence  between
accreditation bodies and an equivalence for their calibration certificates required to have their
uncertainties evaluated and expressed in a harmonized way. The work, initiated by CIPM, was
later  performed by a  joint  committee  of experts  from different  international  organizations
involved in standardization (ISO, IEC, OIML, …). Its final result is the already mentioned
GUM,  first  published  in  1993  and  later  introduced  as  a  Standard  by  each  of  the  above
mentioned organizations. While originally intended for calibration laboratories, the GUM is
presently  to  be  considered  as  the  basis  for  expressing  the  results  of  any  measurement
performed in accordance with an international Standard.

As any document produced by a committee of experts, the GUM reaches useful practical
solutions through compromises between different views. One of these pragmatic compromises
may be found when comparing  its  specific  procedure for  evaluating  uncertainty  with the
definition itself of uncertainty as «a parameter, associated with the result of a measurement,
that  characterizes  the  dispersion  of  the  values  that  could  reasonably  be  attributed  to  the
measurand», a definition that better corresponds to the classical region of reasonable doubt or
empirical safety, represented by the “worst possible case” having less sharp borders, that has
been used for a long time by scientists and technicians.

2.3. The GUM procedure
The starting point  of the GUM is to consider all  the physical  quantities  involved in a

measurement  (such  as  measurands,  influence  quantities,  corrections,  reference  materials
properties,  manufacturer  or  reference  data,  …)  as  random  variables,  whose  PDs  are
characterized by their SDs and to use such SDs as a basis for representing the uncertainty for
the values of the PDs. Each measurement result is then expressed as a couple <x,s(x)> where



the first term is a singleton assumed as the measurand value and the second term is its SD (the
GUM calls it a “standard uncertainty”; for the sake of simplicity the common statistical term
of standard deviation will be however maintained in the following), a representation based on
what has been previously called the M1 interpretation (complete specificity and uncertainty). 

In contrast to this formal homogeneity, a pluralistic view is assumed on the interpretation
of the probability, and therefore on the procedure to obtain the SDs. The GUM recognizes
indeed that the uncertainty of a measurement result can derive from two distinct areas: some
uncertainties,  designated  “of  type  A”,  are  computed  by  the  statistical  treatment  of
experimental data, obtained as the observed frequencies in repeated experiments; some other
uncertainties, designated “of type B”, are instead estimated by scientific judgements based on
personal experience and a priori information and therefore describe a degree of belief on the
occurrence  of  events.  Operatively,  from  this  distinction  a  suggestion  is  derived  on  the
hypothesis to be preferred for the PD: Gaussian for type A and uniform for type B.

Although all the details about the GUM procedure should be left to a careful reading of its
full text, some basic principles may be here recalled.

The core of the GUM procedure is the law of propagation of the variances (that the GUM
interprets  thus  as  a  law  of  propagation  of  uncertainties)  to  be  applied  for  derived
measurement. Let Y be a quantity depending on N input quantities Xi, i=1,…,N, through the
functional relationship:

Y = f(X1,…,XN) (3)

(we are following the usual convention according to which the quantities are denoted in upper
case and the values they assume in lower case). In the case the measurands Xi are considered
only uncertainly known, are therefore their values are expressed as <xi,s(xi)>, the issue arises
of how to obtain a corresponding value <y,s(y)> for Y. Consistently with its basic hypotheses,
the  GUM assumes  that  the  measurand value  y and  its  SD can be  obtained by means  of
separate computations. While an estimate y of Y may be obtained by introducing the estimates
xi of the input quantities Xi in the model function  f, in the simplest case of non-correlated
quantities  the variance  s2(y)  of  y can be obtained from the variances  s2(xi)  of its  N input
quantities xi by the formula:

s2(y) = ci
2 s2(xi) (4)

The  sensitivity  coefficients  ci describe  the  extent  to  which  the  output  estimate  y is
influenced by variations of the input quantities xi. In most cases they can be evaluated from
the first partial derivative of the model function f:

ci = (5)

Numerical  methods  or  experiments  may  be  used  when  the  model  function  is  not
sufficiently known or it is strongly non-linear.

When two input quantities xi and xj are known to be to some extent correlated, the variance
s2(y) shall consider also their covariance C(xi, xj):

s2(y) = ci
2 s2(xi) + 2 ci cj C(xi, xj) (6)

While  all  the  terms  of  the  first  summation  are  positive,  in  the  second  summation  the
covariance may be either positive or negative. It may also be expressed by using the SDs s(xi)
and s(xj) and the corresponding correlation coefficient rij (| rij | 1):

C(xi, xj) = rij s(xi) s(xj) (7)

A  correlation  should  be  generally  evaluated  through  the  operator  knowledge  and
experience: it may occur because of the use of the same reference data, reference standard or
measuring instrument, in determining both xi and xj.



The GUM gives only a suggestion about the processes to be considered as uncertainty
sources; besides the sources already mentioned in the Section 2.1, they include:

- an incomplete definition of the measurand;
- an imperfect realization of this definition;
- the representativeness of the sample in respect of the defined measurand;
- the assignment of values to measurement standards and reference materials;
- the approximations and assumptions included in the measurement method and procedure;
- the  assignment  of  values  to  constants  and  other  parameters  obtained  from  external

sources and used in the data reduction algorithm. 
It is therefore necessary to fully investigate the measurement process, in order to recognize

the different possible uncertainty sources and to quantify their contribution. The result is a
sort of uncertainty budget, from which the resulting uncertainty can be derived.

An important practical result of the GUM procedure is the standardization of the numerical
expression of an uncertainty to at most two significant figures. Furthermore, the usual rules
should be used for rounding, with preference to round up. EAL (European co-operation for
Accreditation of Laboratories) [7] recommends to use the rounded up value if the opposite
would reduce the value of uncertainty by more than 5%. Correspondingly the numerical value
of the measurement result, in its final statement, should be rounded to the least significant
figure involved in its assigned uncertainty.

The importance of these rules stands in the underlying consideration that an uncertainty
value  is  only  an  estimate  of  a  complex  and  partly  unknown process  and  in  imposing  a
corresponding limit to the significant figures also for the result.

2.4. From uncertainty to non-specificity
The  GUM  suggests  the  SD  s(y)  resulting  from  the  formulas  (4)  or  (6)  as  the  main

parameter  for evaluating  the uncertainty  of  a measurement  result.  However, «to meet  the
needs of some industrial and commercial applications, as well as requirements in the areas of
health  and  safety»,  an  expanded  (or  overall)  uncertainty  u(y)  is  defined,  obtained  by
multiplying s(y) by a coverage factor k:

u(y) = k s(y) (8)

As previously considered, the adoption of a coverage factor implies more than a trivial
multiplication,  and  corresponds  to  swap  from one  way  to  interpret  the  non-exactness  of
measurement, completely specific but uncertain results, to the opposite one, non-specific but
certain results. Indeed, the meaning and the way to evaluate the factor k are clearly understood
when a definite PD is attributed to the measurand y. The quantity  k s(y) may then represent
the interval including a given percentage of this PD (e.g., as stated before, 95% of a Gaussian
PD with SD s is included in the interval of 1,97 s around its mean).

This concept may be extended to other forms of PDs, resulting from the combination of the
PDs of different uncertainty components, when their degrees of freedom are known. In some
cases to compute a value of k corresponding to given percentage of the PD can be much more
difficult, even if appeal can be made to the Central Limit Theorem, to some hypotheses on the
existing degrees of freedom and to some statistical rules for combining them. In most cases
the resulting value for k, for a confidence level around 95%, is between 2 and 3: hence many
specifications  for  laboratory  practice  recommend  to  express  overall  uncertainty  using  a
standard value of k=2, or to specify the reason why other values have been adopted.

Nonetheless, the main point is not the procedure for computing  k but the meaning that
should attributed to it.  While a SD  s may be accepted as a quantitative information about
uncertainty, the accurate definition of both a final PD and its confidence intervals seems to
many people  practically  unfeasible,  and however  an  inadequate  way to  express  the  non-



exactness  of  the  measurement  results,  mainly  because  of  the  difficulties  that  arise  in  the
formal treatment of non-specific entities such as intervals, for which no special importance
could be given to the central value of the interval with respect to the other ones.

2.5. Other procedures for evaluating uncertainties 
As every result obtained from compromises, the GUM procedure may be criticized from

different, and sometimes opposite, viewpoints. On the one hand, it has been noted that several
hypotheses  on  which  such  a  procedure  is  more  or  less  explicitly  based  are  not  always
applicable. Examples are the hypotheses of a zero central value and of a symmetrical PD for
all  the  corrections;  the  requirement  of  assigning  a  priori  a  PD  to  formalize  the  type  B
uncertainties, … On the other hand, the definition and evaluation of the confidence limits may
appear too detailed, when the generally low level of a priori knowledge is taken into account.
In evaluating uncertainty sources of type A, indeed, the values of their SDs resulting from a
limited number of experimental data should be considered only as rough estimates, thus with
large uncertainties associated with them.

With the goal of overcoming these difficulties and encompassing in a unique conceptual
and formal framework the treatment of non-exactness in measurement, several authors [8,9]
have presented a different uncertainty theory, based on Bayesian statistics. While the GUM
recognizes a parallel status for objective and subjective criteria in the uncertainty evaluation
by  making  both  type  A  and  type  B  uncertainties  coexistent,  this  competing  approach
emphasizes the importance of the operator’s knowledge on the measured system for such an
evaluation. When setting up the devices to perform a measurement, some a priori knowledge
on the measurands (like their possible ranges of value, frequency spectra, …) must indeed be
available to select the scale, sensitivity, bandwidth, … of these devices. The dependence of
the quantities to be measured from external influence quantities and the presence of noise and
interference should also be evaluated a priori, at least in statistical terms.

A random variable, named “estimator”, is then associated with every input quantity playing
a role in the measurement, regardless of whether or not this quantity generates random data.
Any estimator is associated with its uncertainty, expressed, as previously indicated, by the SD
of the PD attributed to it, that represents the incomplete information available.

The estimators replace the input quantities in the mathematical model of the measurand
and shall therefore satisfy the model relationships. From these hypotheses, the distribution can
be found that  maximizes  the likelihood of the measurand for a  given result  (principle  of
maximum information entropy), and its expected value and uncertainty can be computed.

In  the  simplest  cases  the  results  of  such  a  procedure  are  not  so  different  from those
obtained according to the GUM prescriptions, but this approach can be successfully used also
in special complex cases as non-linear, multi-measurand and function measurements.

2.6. Comments to the above procedures
The  various  procedures  described  in  the  above  Paragraphs  may  be  considered  as

mathematical models for representing the measurement process.
Although the currently available  computing resources allow to deal  with models  much

more complex than the ones effectively manageable until the recent past, we believe that the
simple procedure specified in the GUM is at present adequate for industrial measurements.
Research efforts should be devoted rather to clarify the application of such a procedure to
practical cases, helping to determine the parameters to be introduced in its formulas, to avoid
confusion and too pessimistic or too optimistic conclusions. For instance, to estimate a value
for the uncertainty due to a measuring instrument would require a calibration performed under
the  combined  ranges  of  the  influence  quantities.  For  many  instruments,  however,  it  is  a
common  practice  to  have  standards  stating  “error  limits”  separately  for  the  reference



conditions of the influence quantities (“intrinsic  error”) and for their  variations  in the full
range  of  a  single  influence  quantity.  This  makes  the  acceptance  tests  simpler  on  these
instruments, but makes very difficult to assess a reasonable value of the overall uncertainty in
practical operations: indeed, the effects of one or more influence quantities could be much
lower than these limits, and the possible correlation between the effects of different influence
quantities  is  generally  unknown.  The  GUM  procedure  may  be  of  easier  application  for
instrument  calibration,  when  the  standard  assumed  as  reference  is  well  known  by  the
calibration laboratory and the terms of the uncertainty budget may be stated according to the
operator capacity and authority.

Industrial  tests  are  much more  difficult  to  deal  with.  The uncertainties  due to  the test
conditions are not always known in these cases, although they can be of great importance for
the final result. Furthermore, several different values are usually obtained by readings on the
same instrument, so that a large correlation factor may exist between the results. For instance,
in computing the ratio or difference between two different but successive readings of the same
instrument,  only the sources affecting its repeatability  and the uncertainty due to its  non-
linearity should be considered, all the effects of the other sources being almost cancelled by
their strict correlation. It is not possible to distinguish these two types of uncertainty sources
with the common manufacturer instructions.

It is difficult to obtain a satisfactory uncertainty budget by a debate between manufacturer
and  customer,  especially  when  large  economic  interests  are  involved.  This  situation  will
hopefully  change  in  a  next  future,  when  instrument  manufacturers  will  fully  adapt  their
specifications to the GUM requirements and the international Standards will provide clear
statements for every test procedure, to have unquestionable, even if conventional, rules for the
values to be introduced in an uncertainty budget, so to avoid discrepancies in the evaluation of
a result.

It  should  in  any  case  be  remembered  that  an  uncertainty  value  cannot  be  strictly
determined but it is always estimated. As the assumption of the measurand “true value” has
been rejected, it is obvious that a “true value” for the uncertainty attributed to the measurand
value cannot be defined.

3. CONSEQUENCES

3.1. Compatibility
Besides its nature of quality index for measurement, uncertainty has important applications

whenever a decision has to be taken related to the results of non-exact measurements. The
most  important  practical  cases  are  the statements  of compatibility  (or conformity)  and of
tolerance. These issues have not yet been fully covered by international Standards, so that the
two terms are not even present in the “International vocabulary of basic and general terms in
metrology” [10].

In general, two measurement results are said to be compatible when they can be attributed
to the same measurand; the simplest condition for stating their compatibility is obtained by
considering  them as  intervals,  i.e.  with  a  M2 interpretation,  and  requiring  their  non-null
intersection. For two measurement results:

x1 = m1  u1 (9)
x2 = m2  u2

the compatibility condition is therefore:

|m1  m2|  u1 + u2 (10)



(it should be noted that, due to its generality, this condition can be easily extended to ordinal,
and even nominal, cases).

As  a  reduction  in  uncertainties  may  cancel  the  presence  of  common  values,  any
compatibility statement is an ascertainment of the fact that the available data do not allow to
distinguish  the  results.  Compatibility  statements  should  therefore  be  associated  with  the
uncertainty levels by which they have been derived.

Compatibility  is  relevant  when  different  measuring  procedures  or  different  measuring
systems are employed on the same measurand.  This  is  the case of  the instrument  checks
performed  by  calibration  laboratories  and  of  measurements  performed  with  the  same
procedure and similar instruments on two different test objects to demonstrate the equivalence
of  their  parameters.  The  differences  among  these  two  applications  will  be  shown in  the
following.

It is important to remark that, in principle,  compatibility is not transitive, i.e.,  from the
compatibility between  x1 and  x2 and between  x2 and  x3 the compatibility between  x1 and  x3

cannot be in general assumed.

3.2. Rules for compatibility
Besides  the  simple  formula  (9)  the  compatibility  condition  between  two  measurement

results may also be expressed using statistical criteria [11,12] by a relation like:

| m1  m2 |  f(s1, s2) (11)

where s1 and s2 are the SDs of the PDs assumed for the values of M and from which the
extended uncertainties u1 and u2 have been obtained. The previous formula may be reduced to:

| m1  m2 |   sd (12)

when an appropriate value sd is defined as the SD for the difference d = m1  m2. For non-
correlated measurements:

sd
2 = s1

2 + s2
2 (13)

The form of function f and the value of coefficient  depend on the procedure followed in
defining the compatibility criterion.

3.3. The effect of traceability
When evaluating the compatibility between two results, a special consideration should be

given to the traceability of the concerned instruments, i.e., to the fact that both their outputs
should derive, through an uninterrupted chain of calibrations, from the international standard
of the measured quantity [13].

In a simplified view, a calibration consists in creating a correspondence between the value
x0 attributed to a standard, and the value m0 given by the instrument, in a well defined set of
its operating conditions. To attain this correspondence may require to operate regulations, to
use scale factors, to introduce corrections, …

A second step to make an instrument suitable for accredited measurements is to assign to it
an  appropriate  (extended)  uncertainty  u  such  that  whenever,  in  any  operating  condition
included in its rated range of use, it is compared again to the standard x0, this value should be
included in the measurement result. This is in fact the condition for passing a verification:
otherwise the instrument should be re-calibrated. Such a process is however not intended for
determining the value of the measurand, that is supposed to be already known, but only for
checking whether the instrument has maintained its metrological characteristics.

Two  instruments,  complying  with  the  above  mentioned  conditions  of  calibration,
uncertainty  and stability, will  then  always give  compatible  results  when compared to  the



standard  x0,  or  when applied to the same measurand having,  like a standard,  a  negligible
intrinsic uncertainty. As this principle can be applied to any pair of instruments, it may be
concluded that, under these conditions, compatibility is transitive.

To have  two  compatible  measurement  results  does  not  however  solve  the  problem of
deriving the value and uncertainty of their measurand X [14] as it can easily be shown by
using an uncertainty  representation  by intervals.  Then the value of  X should certainly  be
inside the common part of the two intervals but the amount of uncertainty to be attributed to it
is questionable; to simply apply its basic definition given by the GUM would lead to assume
as uncertainty of X the common part  of the uncertainty intervals of the two results.  This
would however mean to assume a lower uncertainty the smaller is this common part i.e. the
higher is the difference between the results. To apply the GUM formulas to some weighted
mean between m1, m2 would at contrary lead to uncertainties independent on this difference.

The  PD  to  be  considered  for  the  difference  d=m1m2 between  the  outputs  of  two
independent  measurements,  performed on the same measurand,  may have different forms,
according to the hypothesis that have been assumed for the PDs in the uncertainty interval
(usually Gaussian or uniform). It has however always zero mean value and a SD sd  given by
formula (13). From this distribution, an interval can be found in which, with an appropriate
confidence level (e.g., 95%), the hypothesis of a unique value of X could not be rejected.

The opposite is however not true: to have two results which satisfy the condition expressed
by the formula (10) does not necessarily correspond to the presence of a unique, unknown
measurand X, even when its  intrinsic  uncertainty  may be considered as negligible.  When
performing tests in a laboratory, this dilemma could be solved by increasing the number of
measurements, but this is not always the case for the comparison of results in industrial tests.

When a non negligible value of intrinsic uncertainty  u(X) is attributed to the measurand,
each  result  has  a  larger  uncertainty,  then  the  PD  of  the  quantity  d,  resulting  from  the
combination of the PD of the two measurement results, is more complex and has a larger SD.
Compatibility criteria should therefore be relaxed so that, e.g., the condition expressed by the
formula (10) should become:

| m1  m2 |  u1 + u2 + 2 u(X) (14)

Note however that, in this case, compatible measurement results may have no common
part so that a compatibility condition based on the formula (10) becomes here in general non-
transitive.

3.4. Further applications of compatibility
Compatibility  may have,  in principle,  several  applications  that  have not yet been fully

explored.
A simple example is to use uncertainty intervals in determining the parameters of a linear

regression between two measured quantities. The consequences of this approach would differ
from those derived by the traditional use of least squares methods. For instance, a range of
values (i.e., an interval of uncertainty) could be already assigned to the two parameters of a
straight line when considering only two observations,  but this range could even disappear
when more observations are taken into consideration, if they are not compatible with a linear
regression.

3.5. Tolerance limits
The general term “tolerance” indicates acceptable limits around a specified value, but it

can have in practice two different meanings. Failing an internationally adopted terminology,
the following distinction can be made [15]:



- when considering the construction of a part of a system, there are limits within which the
values of its parameters may be considered as equivalent with respect to the system
performance; the classical example is the tolerance on the rated values for the diameters
of a cylindrical rod and its bearing, in connection with their good coupling; these limits
may therefore be denoted as “constructive”;

- when considering the acceptance test for a device, the limits should be specified within
which the measurement results must be included to assume that the device has passed
the test; these limits have a more legal sense and are often expressed as “inspection
limits”.

Clearly, the two meanings would coincide if uncertainty would not be present or not taken
into account. This is generally the case when uncertainty is much lower than tolerance (e.g., in
a ratio lower than 1:5). In any other case, different points of view may exist: a tolerance and
an uncertainty may be simply added, to consider their worst possible combination; or they
may be treated as a combination of two random variables with known PDs. For a quantitative
assessment, with the introduction of uncertainty it becomes possible either to start from given
constructive limits and impose lower inspection limits, or to reduce the constructive limits.
Both these decisions however generally involve a cost as they require more sophisticated test
and measuring equipment or higher quality for the apparatus to be manufactured.

It is also possible to subdivide the inspection limits into a zone of full conformance with
specifications and zones of ambiguity, where neither conformance or non conformance can be
proved, because the result is within the uncertainty intervals around the specified constructive
limits.  To manage  this  state  of  ambiguity  and  to  reach  a  decision  on  the  acceptance  or
rejection  of  a  part  it  is  necessary  either  to  reduce  uncertainties,  by  improving  the
measurements  and the  test  procedure,  or  to  accept  the  risk  of  a  wrong statement  on  the
conformance or non-conformance with specifications.

4. CONCLUSIONS
In the present paper it has been shown how the non-exactness of measurement results can

be interpreted in terms of non-specificity and uncertainty, and how the latter can be defined,
evaluated and expressed according to an international agreement, as formalized in the “Guide
to  the  expression  of  uncertainty  in  measurement”.  Such  an  agreement  is  specifically
satisfactory for instrument calibrations, but it requires some extensions to be applied to other
kinds of measurement.

The procedures described in the Guide could be implemented into an automatic measuring
system, to directly  obtain the measurement results in their  complete form, i.e.,  as couples
<measurand value, uncertainty estimate on it>. This would be particularly valuable for many
types of industrial measurements, where the nature and characteristics of the measurands, of
the concerned instruments, and of their influence quantities are well known and repeatable.
Whenever  the  above mentioned  conditions  are  not  fulfilled,  the evaluation  of  uncertainty
remains a task of the operator, who must resort to his skill and experience to assess the range
of values that can be reasonably attributed to the measurand, to dissipate the cloud of doubt
that always exists when a physical phenomenon is expressed in some linguistic form. In these
cases  the  capacity  of  critically  analyzing  and  interpreting  facts  and  instrument  readings
remain an exclusiveness of the human mind.

As the great Italian artist and scientist Leonardo da Vinci stated: «to have few thoughts
involves to have many mistakes». This is one of the reasons why to measure is always a
fascinating adventure.
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