
MEASUREMENT

Measurement is widely performed to produce information about properties of objects, and the
quality of measurement results may be evaluated: a theory of measurement provides criteria to
distinguish  measurements  from  processes  like  opinion  making,  and  about  the  quality  of
measurement results. Moreover, it establishes the structure – whether quantitative or not only
– and the domain – whether physical or not only – of properties to be measurable.

The scope of a theory of measurement

Measurements  are  performed  in  many  different  contexts  to  produce information  about
properties of  systems,  phenomena,  processes,  individuals,  organizations,  and so on.  It  is  an
integral  part  of  modern  science  as  well  as  of  engineering,  commerce,  and  daily  life.
Measurement is often considered a hallmark of the scientific enterprise and a privileged source
of knowledge. But what is the source of the acknowledged special efficacy of measurement?

First,  a  theory  of  measurement  is  expected  to  provide  a criterion of  demarcation,  able  to
distinguish measurement  from other information-related processes  like  opinion  making and
computation: not all processes of information production are measurements.  Second, the fact
that  measurement  is  a  designed-on-purpose  process,  not  a  natural  phenomenon,  adds  a
pragmatic layer to the theory: a theory of measurement is expected to provide some criteria of
qualification, able to characterize good and bad measurements (the quality of an opinion, for
example by a highly qualified expert,  could be better than the quality of a measurement, as
performed  for  example  by  means  of  a  cheap  instrument),  and  this  prevents  defining
measurement simply as any high-quality information production process.

Moreover, a theory of measurement needs to be situated with respect to two strategic issues.
First, is there any constraint about the  structure of measurable properties? And therefore, in
particular:  is  –  for  some  reason  to  be  identified  –  measurability  a  feature  of  quantitative
properties (“quantities” for short) only, or can also non-quantitative properties be measured?
Second, is there any constraint about the domain of measurable properties? And therefore, in
particular: is – for some reason to be identified – measurability a feature of physical properties
only, or can also psychosocial properties be measured?

These issues probe the very idea of what measurement is,  as developed across millennia of
scientific, technological, philosophical, and societal changes, and as currently challenged by the
widespread emphasis on datafication: can an entirely informational process, with no empirical
stages in it, be a measurement (perhaps a “virtual measurement”, as sometimes it is called)?
Does a difference remain between a measurement and a simulation of a measurement?

After some notes setting a fundamental terminological ground, the domain – whether physical
or not only – and the structure – whether quantitative or not only – of measurable properties
are analyzed in a historical  perspective, and on this  basis  the problems of demarcation and
qualification are discussed. The conclusion will  be that what is measurement,  and therefore
what a theory of measurement should deal with, is still a moving target.
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Background

Measurement  is  about  attributing  values  to  properties  of  objects:  unpacking  this  is  a
precondition  for  a  theory  of  measurement.  The  assumption  is  that  objects,  like  systems,
phenomena, processes, individuals, and organizations,  have properties, like length, color, age,
and intelligence (in a property-oriented ontology an object is  something that has properties;
whether  objects  can  be  identified  independently  of  their  having  properties  is  an  issue
preliminary  to  our  subject).  Not  any  object  o has  any  property  P (for  example  gasses  and
companies  do  not  have  geometric  shape),  so  that  for  each  property  the  set  of  objects  is
partitioned into the subset of the objects that have the property – it may be called the domain
of the property, D(P) – and in the complementary subset of the objects that do not have it. This
may be written in the predicative form has_P(o), that is either true or false, so that

D(P) := {o: has_P(o)}

Hence  has_electric_charge(electron)  is  true and  has_reading_comprehension_ability(Moon)  is
false. Such a classification – for any sufficiently well-identified P and o, either has_P(o) or not – is
the piece of information that provides the fundamental justification of  the interest in dealing
with properties.

Sometimes this information may be refined, by recognizing that a property P is associated with a
set XP of other properties,  XP,1,  XP,2, … such that, for each o,  has_P(o) if and only if there exists
one and only one XP,i in XP such that has_XP,i(o). For example, for a physical body o, has_color(o)
if and only if has_color_red(o), or has_color_blue(o), and so on. In other words, for having color
an object must have a color. Such coordinated – because exhaustive and mutually exclusive –
properties XP,i may be called “manifestations” of P, or “determinates” of the “determinable” P.
In this way the domain of P is partitioned into equivalence classes, where each XP,i identifies the
class of objects o such that has_XP,i(o).  This process may be repeated by refining the partition:
has_color_red can  be  considered  a  determinable  in  turn,  whose  determinates  are
has_color_red_magenta,  has_color_red_scarlet, etc. Note that multiple criteria of partitioning
are usually possible, and therefore that the set of determinates of a given determinable is not
necessarily unique.

Whenever XP,i is considered as an element of XP, the predicate has_XP,i(o) is customarily written
in the functional form of a basic evaluation equation

P(o) = XP,i in XP

(for example,  color(o) =  red in {red,  blue, …}, thus highlighting the conditions of existence and
uniqueness in  XP of the determinate  XP,i of the determinable  P for each object  o in  D(P). This
equation formalizes the core information that can be obtained by a measurement: the object o
has the property P, and in particular the property XP,i in the classification of P according to XP (for
example:  o has  color, and in particular has  color red in the classification of  color according to
{red, blue, …}). This justifies the usual understanding of P as a function that when applied to the
argument o has the value XP,i in the set XP, and provides a sufficient explanation of the somewhat
confused related lexicon: both P and P(o) are considered to be properties (color is a property;
the color of this object is a property that the object has), and  XP,i in  XP is called a  value of a
property.
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Measurement as representation

The idea of measurement as representation plausibly originates from here: as it was stated by
Norman Campbell, who to measurement devoted a large part of his book Physics: the elements
(1920), measurement is the process of assigning numbers to represent properties, where in fact
“representation”  and  “assignment”  are  usual  terms  to  designate  functions.  In  this  way the
content of  the basic  evaluation equation is  weakened,  by omitting any condition about the
equality of  properties  of  objects  and  values  of  properties,  and  actually  interpreting  such
equations as

representation(P(o)) = value

(or  sometimes  even  as  representation(o)  =  value,  by  thus  absorbing  the  reference  to  the
property  in  the representation).  In  this  broad sense,  measurement  is  considered  to  be the
representation of properties of objects by means of values that are assigned according to some
consistency  conditions,  the  simplest  of  them  being  that  distinguishable  properties  must  be
represented by distinguishable values, so that no information is lost in the representation. A
basic set of such conditions was proposed by Stanley Stevens in his seminal paper On the theory
of scales of measurement (1946), in which a sequence of scale types is identified, each of them
characterized by an algebraic structure and a related condition of invariance. For example, if the
properties xi to be represented are not only distinguishable from each other but also ordered,
then the values f(xi) by which the properties are represented must be ordered accordingly:

if x1 < x2 then f(x1) < f(x2)

As  a  consequence,  any  further  monotonic  function  g applied  to  the  values  preserves  the
information conveyed in the representation, i.e.,

if x1 < x2 and f(x1) < f(x2) then also g(f(x1)) < g(f(x2))

so that the property x can be represented not only by f(x), but also by g(f(x)). For this reason g is
called an admissible scale transformation.

Many physical properties are more than ordinal only, and admit a comparison by ratio (e.g., this
is twice as much as that), sometimes based on an additive structure, such that objects can be
composed according to their property and the composition has the features of a sum:  x1+x2 =
x2+x1,  (x1+x2)+x3 =  x1+(x2+x3),  and  so  on.  At  least  in  classical  physics  this  applies  to  lengths,
masses, durations, intensity of electric current, etc. In these cases a property may be singled out
as  the  unit,  mapped  to  the  value  1  of  the  scale,  so  that  all  comparable  properties  are
represented by multiples or submultiples of the unit, and the generic value  XP,i in  XP can be
meant as  k u,  i.e.,  the  k-th multiple of the unit  u (e.g.,  1.234 m).  In such a ratio scale any
similarity,

g(f(x)) = k f(x), with k > 0

is an admissible transformation, so that a scale factor  k is sufficient to transform for example
values in metres into values in inches.

The following table, adapted from Stevens’ paper summarizes the main scale types and their
defining conditions (where x is a property, v is a value, and g is a scale transformation).
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<table 1 here>

This is the weakest, and therefore most encompassing, notion of measurement, also applicable
to situations that someone would hardly accept as measurements at all (e.g., a measurement
was performed because in  one’s opinion this is less than that and I labeled this as less than
that). After Stevens this position was given a more rigorous mathematical formalization by the
so-called  representational  theories  of  measurement,  in  which  the  fact  that  a  structure  of
properties can be mapped into a structure of values, through a “representation theorem”, is
considered sufficient to make it a theory of measurement: if it is a consistent representation – in
this algebraic sense of consistency – then it is a measurement.

Measurability

If the long scientific, technological, philosophical, and societal development of measurement is
read  in  light  of  the  representational  approach,  a  clash  emerges:  while  consistency  in
representation may be acknowledged as a necessary condition of measurement, its sufficiency
would be questioned, by noting that, even if all measurements are consistent representations,
not all consistent representations have been historically accepted to be measurements. Further
possible constraints relate to the structure – whether quantitative or not only – and to the
domain – whether physical or not only – of measurable properties. In both cases the root is
plausibly to be found in the mathematics of classical Greece.

Can a non-quantitative property be measurable?

Ratios were so fundamental in Greek mathematics that “rational”, i.e., “based on ratio”, was
meant also as “reasonable”. And ratios were construed in terms of measures. Indeed, according
to Euclid, in book v of Elements, “a magnitude is a part of a(nother) magnitude, the less of the
greater, when it measures the greater”, where Aristotle, in book v of  Metaphysics, explained
that “a quantum is a plurality if it is numerable, a magnitude if it is measurable. ‘Plurality’ means
that which is divisible potentially into non-continuous parts, ‘magnitude’ that which is divisible
into continuous parts.”. On this matter distinguishing discrete vs continuous properties sounds
today immaterial (hardly would someone claim that, say, the discovery that energy is quantized
implies that it is countable but not measurable). Rather, important here is the nature of the
entities whose measurability is considered. And that these concepts of magnitude and measure
relate  to  mathematical,  and  not  empirical,  entities  is  clear  from  the  fact  Euclid  himself
considered that  “a  number  is  part  of  a(nother)  number,  the lesser  of  the greater,  when it
measures the greater”. Two millennia later, Augustus De Morgan was keen in pointing it out:
“the term ‘measure’  is  used [by  Euclid]  conversely  to  ‘multiple’;  hence [if]  A  and B have a
common measure [they] are said to be commensurable”.

In the past the question whether the geometry of  Elements is mathematical or empirical was
possibly considered ill-posed, but with the break produced by the discovery of non-Euclidean
geometries it  became critical.  And, despite some still  existing stereotypes,  the conclusion is
clear:  Euclid was concerned about  the mathematical  concept of  measure,  not the empirical
concept  of  measurement discussed  here.  Hence,  the  source  of  the  “special  efficacy”  of
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measurement cannot be the Euclidean concept of measure.

Can a non-physical property be measurable?

The emphasis on empirical entities of the experimental method promoted by Galileo Galilei led
to reinterpret numerable pluralities and measurable magnitudes as physical quantities. In fact, a
trace  of  the  Euclidean  focus  on  geometry  remained  in  the  traditional  term  “weights  and
measures”, as if weights (and pressures, temperatures, etc) were not measurable because only
dimensional  quantities  are.  For  example,  in  his  Mathematical  and  Philosophical  Dictionary,
1795, Charles Hutton called “observation” the process of evaluating a temperature by means of
thermometer: it was not a measurement, because only continuous geometric quantities were
considered to be measurable. With such a strict implied meaning, it is not surprising that Otto
Holder’s seminal paper (1901) Die Axiome der Quantitat und die Lehre vom Mass (translated as
The Axioms of Quantity and the Theory of Measurement) maintained continuity and additivity as
characterizing features of measurable properties. That most, if not all, psychosocial properties
are not continuous, nor in fact additive, can be taken for granted: in no way the intelligence of
two individuals is the sum of their intelligences, and so on (peculiarly, in those years physicists
were discovering the discontinuity also of some physical quantities, at the fundamental level of
quantum mechanics).

The measurability of such properties was the conundrum that led a committee appointed in
1930 by the British Association for the Advancement of Science to study “quantitative estimates
of sensory events”. The conclusion was, substantially, that for a property to be measurable it
must  exhibit  an  additive  structure  or  must  depend  functionally  on  one  or  more  additive
quantities  (what  Campbell  had  called  fundamental  magnitudes and  derived  magnitudes
respectively). These conditions are possibly fulfilled by some psychophysical properties – along
the line of the work started in the mid of XIX century by Gustav Theodor Fechner about the
relationships between physical stimuli and the associated human responses – and in the mid of
XX century triggered the development of methods to identify a hidden (interval) ratio structure
in properties, particularly Rasch methods and the so-called “conjoint measurement” methods.
But  it  also  created  a  barrier  that  appeared  impossible  to  overcome for  many  psychosocial
properties, particularly in the context that we now call psychometrics.

A more encompassing concept of measurability, then?

The above-mentioned representational approach proposed a constructive strategy to overcome
these limits, at the price of neglecting (i.e., abstracting from) the way the process of measuring
is structured and actually performed, a choice that makes the approach general but also generic.
For sure, quantitative evaluations convey more information than non-quantitative ones, as the
theory  of  scale  types  shows;  but  the  multiplicity  of  the  scale  types  also  highlights  the
conventionality of the position according to which only quantitative properties,  and possibly
only properties evaluated on ratio scales, are measurable. Even in the context of fundamental
physical  metrology  additivity  and  continuity  are  not  taken  as  necessary  conditions  of
measurability any more, as witnessed for example by the International Vocabulary of Metrology,
that assumes that also ordinal properties are (quantities and are) measurable.
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The  mentioned  clash  between  the  strict  conditions  implied  by  the  historical  conception  of
measurement and the loose perspective of representationalism is not solved: both demarcation
– to distinguish measurement from other information-related processes – and qualification – to
distinguish good from bad measurements – still require a synthesis.

Toward a theory of the process of measuring

Measurement is a process: hence, an actual theory of measurement, and not of measure, must
be a theory of the process of measuring, and not only of the input-output relations that the
process establishes. In reference to the metaphor of the black box, a theory of measurement
has to deal also with what there is inside the box, and not only with what enters and leaves the
box.

As a generic basic evaluation equation,  P(o) =  XP,i in  XP, shows (a quantitative example being
length(rod a) = 1.234 m), measurement provides information about the property P of an object
o, by stating that P(o) is a given XP,i and not any other XP,j,  j ≠ i, in XP. There are fundamentally
two strategies to produce this kind of information. First, the value of P(o) can be computed via a
function of already available values (for example, according to Newtonian mechanics the value
of the length of the path traveled by a body moving at constant speed can be computed by
multiplying the values of the speed and of the duration of the motion). Second, the value of P(o)
can be obtained by comparing the object o with other objects sj, called measurement standards,
each of them having a property P(sj) = XP,j in XP, so that P(o) = XP,i in XP for a given i if P(o) = P(si)
(for example,  length(rod a) = 1.234 m if there is a measurement standard  si whose length is
1.234 m and is the same as the length of rod a).

Along the Galilean tradition, the “special  efficacy” of measurement is  a  matter of somehow
identifying the measurand, i.e.,  the property intended to be measured, and finding its value in
the given scale in the here-and-now conditions of the process. To this goal some calculations
may be useful or even required – for example to correct known environmental effects without
an  empirical  intervention  –  but  the  first  strategy  is  not  sufficient:  a  pen-and-paper  only
evaluation is not a measurement, because a measurement requires the property-related direct
or  indirect  empirical  comparison  of  the  object  under  measurement  and  the  measurement
standards that materialize the chosen scale (in the example above, in order to consider that the
length of the path is measured – in what it is traditionally called an indirect measurement – and
not  just  computed,  the  information about  the  speed  and  duration of  the  motion  must  be
acquired in the actual conditions, something that a computation cannot provide).

The two key features to qualify a measurement derive from this. First, measurement results are
expected to be object related, by reporting the outcome of the comparison of the object under
measurement and some measurement standards. This explains the importance attributed to
constructing and characterizing the behavior of measuring instruments, that have the goal of
guaranteeing a sufficient object relatedness by removing the effects of all influence properties.
Second,  in  most  real-life  cases  measurements  are  expected  to  produce  information that  is
socially transferable, and therefore interpretable in the same way by different individuals in
different times and places,  a  condition that makes it  subject  independent.  This  explains  the
importance  attributed  to  disseminating  measurement  standards  and  calibrating  measuring
instruments against them, so that the measurement results are metrologically traceable to the
chosen scale, and in particular to the definition of the unit in the case of ratio quantities.
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The quality  of  measurements and their  results  is  fundamentally  assessed about their  object
relatedness and subject independence, “objectivity” and “intersubjectivity” for short, through
the several (usually quantitative) properties that characterize the process in its multiple facets:
accuracy, specified as precision and trueness, in turn specified as sensitivity, selectivity, stability,
resolution, and so on. The overall summary – traditionally related to measurement error – has
been focused on  measurement uncertainty in the last decades, hence with an encompassing
epistemic  emphasis  on  the  information  produced  by  the  process  and  its  trustworthiness:
measurement is thus conceived of as an empirical and informational process that is designed on
purpose, whose input is an empirical property of an object and that produces values of that
property that are explicitly justifiable in their (good or bad) objectivity and intersubjectivity.

See also Accuracy; Applicability of Mathematics in Science; Data and Phenomena; Epistemology; 
Information Theory; Modeling; Scientific Realism; Statistics

Luca Mari
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