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Abstract

In the last few decades foundations of measurement have developed so as to account for both the role of

modeling in measurement, in particular relating to the presence and the e�ects of measurement uncertainty, and

the fact that any measurement is performed by using instruments that work on the basis of transduction e�ects

and provide justi�ed results only in so far as they are properly calibrated. This has triggered a new interest

about the role of instruments in the models of measurement. The structure of the process has been variously

studied in reference to the connection between measured properties and indications provided by instruments,

and to the way in which intersubjective information on the measurand is acquired through instrument calibra-

tion. From such a background this paper proposes a comprehensive structural model of direct measurement,

whose functional elements, empirical and informational, are presented with a bottom-up strategy as a set of

interrelated modules. The result, shown to be a generalization of some of the models currently available in the

literature of measurement science, highlights the key role of scales for measurement, clari�es the conceptual and

operative relations between direct measurement and calibration, and identi�es the principal sources of measure-

ment uncertainty in the structural context of the process. This model is intended to interpret both physical

and non-physical measurements, and as such it is a component of a �measurement across the sciences� research

programme.
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1 Introduction

Measurement aims to attribute a value to an empirical property intended to be measured [18, def. 2.1]. As such,

it is a process that includes both acquisition components, which through empirical processes produce information

on a given set of properties, and computation components, which exploit such information in order to produce

the measurement result. This task can be achieved by means of direct or indirect methods of measurement. In

direct methods, measuring instruments are designed so as to directly interact with the object under measurement

relative to the measurand. In indirect methods, by contrast, the information on the measurand is inferred from

information about other properties, which ultimately are measured in a direct way. Computation components are

used to return values both on properties which are directly measured, typically on the basis of transduction laws

modeling the transduction e�ect on the basis of which the measuring instrument operates, and on properties which

are indirectly measured, by combining data on directly measured properties according to speci�c mathematical

laws. This general structure can be then represented as in the following diagram, where Qa is the measurand,

Q1, ..., QN are intermediate measurands, i.e., the properties on which Qa depends, v1, ..., vN are the values of these

properties, and v = f(v1, ..., vN ) is the value attributed to Qa.
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Hence measurement either is direct or includes one or more direct measurements as its core components. In

accordance with this insight, the present paper aims to develop a structural model of direct measurement. To this

purpose we build on one of the most signi�cant achievements of the last decades in foundations of measurement: the

acknowledgment that the justi�cation of the quality of measurement results [13, 22, 26, 33, 36] is to be understood

in reference to the structure of the process: �black box�, i.e. input-output, models are not su�cient to account

for the trustworthiness of measurement [24], that must be then modeled by �opening the box� and studying the

process in terms of its components and their relationships. The importance of modeling measurement is witnessed

by several works that in the recent years have enriched the literature of measurement science with proposals on

this subject, including the foundational papers by Finkelstein [1, 8, 9] and Sydenham [35], and more recently, the

analytical contributions by Morawski [27], Rossi [30, 31], Ruhm [32], and also the present authors [11, 13, 21].

The model proposed here builds on these works and is expected to generalize them and provide the conditions

for:

• justifying in structural terms the degree of objectivity and the intersubjectivity of measurement results, by

identifying di�erent sources of uncertainty and helping in estimating their relative import;

• clarifying the analogies and the di�erences between measurement and calibration of measuring instruments,

and explaining the claim that calibration is necessary for measurement;

• allowing for a comparative analysis of measurement of physical and non-physical properties and highlighting

the invariant aspects of measurement across physical and non-physical applications.

Moreover, as measurement is based on a number of modeling activities, a structural model of direct measurement

works as a meta-model providing the conditions for identifying where modeling activities are explicitly or implicitly

performed and what kinds of models are at stake.

Remark 1. At least since the publication of the Guide to the expression of uncertainty in measurement (GUM) [16]

the term �measurement model� has been used also to refer to the mathematical relation by which a value of the

measurand is computed from the values of some �input quantities� and the uncertainties of such input quantities

are propagated to obtain an uncertainty for the measurand [18, def. 2.48]. In this sense, a measurement model

is a component of the measurement process (typically the computation component in the diagram above), not an

interpretation of what a measurement is and how it is structured, as instead intended here, in line with the usual

meaning of model of X as interpretation of X.

We introduce the model with a step-by-step, in fact module-by-module, strategy, where each module models

a sub-process that is conceptually and functionally independent of the other ones, so that the justi�cation of the

whole model only depends on the justi�cation of its components and the way they are combined. In doing so, we

start from two sets of assumptions: the �rst set concerns the measurand, i.e., the property intended to be measured,

and constitutes a basic theory of properties which is necessary to provide a general framework for understanding

measurement; the second set concerns the measurement, as an activity performed by human beings who aim to
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acquire information on empirical objects, intended in a wide sense, including physical bodies, empirical phenomena,

and empirical processes.

1.1 Assumptions on the measurand

The attribution of values to measurands (as in the de�nition of `measurement' given by the International Vocabulary

of Metrology (VIM), [18, def. 2.1]) is informative inasmuch as values represent properties and their empirical

relations [7, 19, 28, 34]. Hence, nowadays it is widely accepted that a theory of measurement is based on a theory of

properties that accounts for both the distinction between general and individual properties, e.g., temperature and

the temperature of a given object respectively, and the representation of properties of objects in terms of values.

In particular, as to the distinction between general and individual properties we assume that [25]

• individual properties, and thus properties of objects, are instances of general properties (the temperature of

a given �uid is an instance of the general property temperature);

• properties may be de�ned, and the de�nitions may involve empirical and theoretical components (a measurand

might be de�ned as the temperature of a given �uid in given conditions of the �uid and the environment);

• general properties may be classi�ed according to the relations that are known to be invariant among their

instances (in the past temperatures were compared only by order, while thermometry made them comparable

also in an interval scale [34]).

In what follows, we will use capital letters, like P , to refer to general properties and capital letters with indices, like

Pi, to refer to their instances. It is worth noting that instances of general properties can be referred to in di�erent

ways. Thus, an instance of speed can be referred to by name, i.e. by using a speci�c expression (e.g., c), or by

description, i.e. by specifying entities that support the property (e.g., the speed of light in vacuum), or also by

value, i.e. by specifying an element in a classi�cation (e.g., 299 792 458 m/s).

As to the representation of properties of objects by values of properties, we assume that [19]:

• both properties of objects and values of properties are individual properties: properties of objects are identi�ed

by reference to an object, whereas values are identi�ed by reference to a set of which they belong (both the

temperature of a given �uid and 300 K are temperatures, the former identi�ed as a property of that �uid, the

latter as the temperature identi�ed as 300 times the unit temperature in the scale K);

• distinct values are attributed to distinguishable properties of objects of the same kind in such a way that

the mathematical relations among values both imply and are implied by the invariant relations among the

corresponding properties of objects (a greater value of temperature is attributed to a warmer �uid);

• the choice of the system of values adopted to represent properties of objects is unique only up to a group

of transformations satisfying the condition that the representation preserves the invariant relations (di�erent

scales of temperature can be de�ned, with the appropriate transformation rules to convert values on one scale

into values on another one).

In summary, values are informational entities that operate as identi�ers for properties of objects, so that a relation

such as Θa = θi, where Θa is the temperature of the object a and θi is a value of temperature like 293.15 K, asserts

that the object a has a temperature which is identi�ed as the temperature that is 293.15 times the temperature

identi�ed as K.

On this basis let us consider the assumptions concerning measurement.
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1.2 Assumptions on measurement

Measurement is considered here a model-based, partly empirical and partly computational, process aimed at acquiring

su�ciently object-related (i.e., objective) and subject-independent (i.e., intersubjective) information on empirical

properties of objects by using suitable instruments, and at presenting such information in terms of justi�ed attribution

of values to properties by using suitable statement systems.

The key components of this characterization are that measurement:

• attributes values to empirical properties of objects, and as such maps empirical entities to informational

entities;

• is a designed-on-purpose, not a natural, process, based on models built or assumed according to the given

purpose;

• aims to acquire information that is su�ciently object-related and subject-independent with respect to the

given purpose;

• reports the acquired information in a way that is justi�ed with respect to the given purpose.

A model of measurement is expected to explain why and how measurement results are justi�ed. In the case of

direct measurement this requires the analysis of the structure of the process, including the comparison between the

property under measurement and the properties identi�ed as elements of a scale, i.e., between a property known by

description and some properties known by value [25], and thus the calibration of the instrument against a reference

to which the results will be metrologically traceable [18, def. 2.41].

1.3 Schema of the study

Given the complexity of the subject and our ambition to de�ne a model that is applicable to all cases of direct

measurements, in what follows we propose a bottom-up presentation, that starts from the simple model of a speci�c

intermediate process, called �pre-measurement� [11], i.e., the process performed by a properly operated but still

not calibrated measuring instrument. By �rst analyzing pre-measurement we are able to discuss the features of

measurement that are independent of metrological traceability, thus highlighting the conditions that allow producing

results that may be objective but cannot be intersubjective yet. On this basis we build to develop �rst a model of

the ideal structure of measurement, which already includes all the components of the process but still assumes that

the process is stable and the role of in�uence properties can be neglected. Hence such an ideal model does not take

any source of uncertainty into account. These sources are then considered in a further model, whose generality we

prove by also showing that it embeds several other models, including representational ones, previously proposed in

the scienti�c literature. This generality is also highlighted by the fact that the presentation does not rely on any

speci�c algebraic structure of the property under measurement, that only as a speci�c case is a ratio quantity (hence

we use the term �scale� for continuity with the tradition, at the same time allowing in principle even non-ordered

scales, semantically a questionable option; whether non-quantitative properties can be measurable is an issue that

we do not discuss here; for a metrological analysis of the subject see [23]).

Direct measurement is modeled here so that its key component is a measuring instrument, with the fundamental

task of implementing what has been called the unobservable-observable bridge [4, p.86]. With the aim of maintaining

the focus on the role of the instrument, we assume here that the property with which the instrument interacts is

the property intended to be measured, i.e., the measurand, and we only mention, in section 8, the problems arising

from the de�nition of the measurand and the coupling of the object under measurement and the instrument.

In order to stress the structural nature of the model, and after a preliminary characterization of the whole process

(section 2), we introduce the model as a system of interacting modules, where each module is formally a function,
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written here as a triple 〈domain, codomain,mapping〉 for clarity: a classi�cation module made of a matching module

and a private scale module, to be con�gured before performing the measurement (section 3), a transduction module

whose operation leads to pre-measurement (�rst model, ideal pre-measurement: section 4), a calibration module

based on a public scale module (section 5), and a measurement module (second model, ideal measurement: section

6). This allows us to compare this model with other models presented in the scienti�c literature (section 7). By

exploiting this structure, the condition of ideality is �nally removed, leading to the proposed model (third model,

actual measurement: section 8).

For making the presentation as concrete and simple as possible, we exemplify each module through a case of

physical measurement. At the end of the paper, other examples, of both physical and non-physical measurements,

are mentioned for highlighting the generality of the proposed model.

2 Preliminary characterization

The measurement of temperature by means of a usual mercury thermometer is the example on which we develop the

analysis that follows: it is both su�ciently simple to allow us to avoid insigni�cant details, and su�ciently complex

to instantiate all the fundamental characteristics of a direct measurement (this choice is also made in [31, 33]). Such

an instrument is designed to produce distinct positions of the upper surface of the mercury column as an e�ect of

its thermal interaction with objects of su�ciently distinct temperatures. These positions can be associated with

marks made on the surface of the glass capillary, related to distances with respect to a conventional zero mark

and corresponding to distinct temperatures. Thus, the matching of the upper surface of the mercury with a mark

corresponds to a distance between the mark and the zero mark, which in turn corresponds to a temperature, as

obtained via instrument calibration. The steps for calibrating the thermometer are then:

1. select a set of known temperatures and a set of objects each having a temperature in such a reference set,

then such that the value of the temperature of each object is assumed to be known;

2. make the device interact with each object of the set;

3. for each interaction, record the instrument indication, i.e., the mark corresponding to the position of the

mercury, together with the value of the corresponding reference temperature

(this is a generic procedure: if the mapping thermometer marks - temperatures is assumed to be a parametric

analytical function, then a number of interactions equal to the number of parameters is su�cient). On this basis,

the steps for measuring the temperature of an object by means of a calibrated thermometer are:

1. make the device interact with the object whose temperature is to be measured and thus obtain the mercury

�ow to a given position in the capillary;

2. match the position of the mercury with the indications recorded in calibration;

3. attribute as measurement result the value of the reference temperature of the matched indication.

The whole system can be then interpreted as a device implementing a function which takes the temperature of

an object in a certain domain and returns a value of temperature: this empirically determined correspondence

between the temperature of an object and a value of temperature constitutes the measurement result, where the

acknowledgment of a non-null measurement uncertainty only requires to extend this interpretation.

Remark 2. The distinction between direct and indirect methods of measurement is not uniquely understood, and

it might be argued that the operation of a mercury thermometer is an example of an indirect method. The �rst

edition of the VIM, for example, mentions the measurement of a temperature using a resistance thermometer as a
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case of indirect method of measurement, de�ned as �a method of measurement in which the value of a measurand

is obtained by measurement of other quantities functionally related to the measurand� [14, def. 2.14]. The weak

point of this characterization is that only few cases of direct measurement would be actually possible (interestingly,

the subsequent two editions of the VIM do not have entries for `direct method' and `indirect method', perhaps as

an implicit acknowledgment of this weakness). The examples that the VIM1 proposes are only �measurement of a

length using a graduated rule� and �measurement of a mass using an equal-arm balance�, and the latter is already

questionable, given that it could be described as the measurement of a mass via its functional relation with the

moment of a gravitational force, and therefore as indirect. The GUM comments that �in most cases, a measurand Y

is not measured directly, but is determined from N other quantities X1, X2, ..., XN through a functional relationship

f : Y = f(X1, X2, ..., XN )� [16, 4.1.1]. As introduced above, the distinction between direct and indirect methods

of measurement worth to consider is instead between (i) cases in which measuring instruments are used that are

sensitive to individual properties of the same kind as the measurand and (ii) cases in which the information on the

measurand is instead inferred from data empirically acquired about properties other than the measurand, where

then this inferential component adds complexity to the process. In this sense, direct methods are the core of any

measurement process.

3 Instrument con�guration

The purpose of any measurement is to establish a correspondence between properties of objects in given domains

and values of properties in given sets of values, thus generating a link between the empirical realm of properties of

objects and the informational realm of values of properties (note that this is not as obvious as it could seem, and

it is in fact in opposition to the purely mathematical modelings according to which measurement maps values to

values � see, e.g., [3, p.3]). The core component for producing this correspondence is what we call a classi�cation

module, which indeed takes properties of objects as input and returns values as output. This module is in turn

based on the composition of a matching module, that compares properties to be classi�ed with reference properties,

and a private scale module, that associates reference properties to values. Let us introduce these modules in the

case of a mercury thermometer.

3.1 Instrument con�guration: private scale module

Some positions in the capillary of the thermometer are marked and associated to a set of values used to discern

and identify them. The marked positions are the empirical outcomes that the instrument is designed to make

discernible. These outcomes are the instrument indications and the values associated to the marks the instrument

indication values (note that this is not compliant with [18, def. 4.1], which considers indications as values, but does

not give a name to the property evaluated by such values). This key process is formalized by

• a set {P ∗
j } of empirically distinguishable properties � the instrument indications � that are instrument-speci�c,

in this case marks on the thermometer capillary as reference positions relative to a conventional zero position;

• a set {pj} of identi�ers � the instrument indication values � that are again instrument-speci�c, in this case

values attributed to marked positions;

• an identi�cation function ιP : {pj} → {P ∗
j }, such that P ∗

j = ιP (pj) is the indication identi�ed by the

indication value pj ; since the set {pj} is chosen so as to make each indication uniquely identi�able, this

function is bijective and instrument-speci�c (e.g., the �rst indication might be identi�ed by the value p1, the

second indication by the value p2, and so on).
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The inverse of the identi�cation function ιP models the recognition of the indication value that identi�es each

indication P ∗
j . Hence it is a recognition function ρP : {P ∗

j } → {pj}, such that pj = ρP (P ∗
j ) is the indication value

recognized for the indication P ∗
j .

{P ∗
j }

ρP

((
{pj}ιP

oo

The ιP - ρP functional loop is crucial for measurement, since it constitutes the link between the empirical realm

and the informational realm in the model of the instrument behavior: the pj 's provide information on the P ∗
j 's.

This is the fundamental justi�cation for the claim that a measuring instrument has inherently both an empirical

and an informational component. In particular, the set {pj} of values is chosen so that the identi�cation function

ιP relates values to entities which are empirically determined, i.e., the reference positions selected by putting marks

on the capillary. A triple like
〈
{pj}, {P ∗

j }, ιP
〉
is a scale, in which a function relates informational and empirical

entities with the purpose of identi�cation (this is in analogy with the de�nition in the representational theories of

measurement � see [28, p.54], where the function in the scale is instead identi�ed with ρP , i.e., the inverse of ιP ),

and in this case a private scale module, since instrument-speci�c.

De�nition 1. (Private scale module): private-scale
def
=

〈
{pj}, {P ∗

j }, ιP
〉

The private scale is constructed by mapping values, i.e., intersubjectively discernible and transferable infor-

mational entities, to reference properties of the measuring instrument, i.e., intersubjectively discernible empirical

entities, via the identi�cation function ιP . The injectivity condition on ιP is a consequence of the fact that the

reference properties in the scale are chosen in such a way that they are discernible, so that distinct values are

mapped to distinct reference properties in order to preserve distinction, and therefore information. The surjectivity

condition on ιP is a consequence of the still more basic fact that the reference properties in the scale are chosen,

and it would be idle to choose discernible reference properties and then not to exploit them. Each mark on the

capillary is then uniquely identi�ed by one value, e.g., �rst mark ↔ p1, second mark ↔ p2, and so on.

Once a private scale has been constructed, it is used by mapping the reference properties of the measuring

instrument to values via the recognition function ρP . Under the hypothesis that the instrument is stable, the

reference positions P ∗
j are themselves stable and therefore the private scale provides a reliable instrument-related

link between the empirical and the informational realm. As we will see, every function in the model linking these

two realms results from the composition with a scale.

Remark 3. The properties under measurement can be discovered to be comparable by more than just discernibility.

Whenever the comparison is invariant, for example, by order or by ratio, measuring instruments can be designed

that produce indications from an analogously structured set. In this case, the set of indication values is chosen

so as to preserve such a structural information, a condition mathematically described in terms of morphisms in

representational theories of measurement [19]. Therefore, it is not surprising that, in identifying a structured set of

reference properties, numerical systems are used to specify the sets of values: this preserves not only distinctions

between properties, but also their ordinal and quantitative relations.

3.2 Instrument con�guration: matching module

The private scale is constructed in such a way that any position Pm of the upper surface of the mercury � the index

m highlights that such a position is a property of the measuring instrument � can be associated to an element of

the private scale, i.e., the indication P ∗
j , that best matches Pm. The instrument is then partly characterized by

• a set {Pm} of observable properties, where each observable property can be in principle matched with one

marked indication of the private scale;
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• a matching function cP : {Pm} → {P ∗
j }, such that P ∗

j = cP (Pm) is the indication that best �ts with the

property Pm; cP is typically a many-to-one function.

The relation P ∗
j = cP (Pm) states the empirical fact that the reference position P ∗

j is the indication corresponding

to the position Pm. We call the triple
〈
{Pm}, {P ∗

j }, cP
〉
a matching module, and each Pm is said to be observable

because it can be matched with a reference position which is discernible, and so recognizable through the private

scale. Hence, observability is intended here not as theory-independence, but in a relative sense, i.e., as being

recognizable and exploitable in a procedure allowing us to measure something else (about the role played by

measuring instrument to make properties observable, see [4]).

De�nition 2. (Matching module):
〈
{Pm}, {P ∗

j }, cP
〉

The fact that cP is usually a many-to-one function can be in particular acknowledged if general properties

with an uncountable set of instances are admitted. In this case there is no way to construct a one-to-one match

between {Pm} and {P ∗
j }, since {P ∗

j } is a human construction and it is not possible for human beings to construct

a uncountable set of empirical elements. The set {P ∗
j } is chosen precisely in virtue of the assumption that any

observable position Pm of the upper surface of the mercury can be observed and matched with the empirical elements

of the scale, i.e., the marks on the capillary. This is an observability condition on the instrument, which usually

implies the quantization of the property relative to the instrument scale. The matching is a process that can be

performed automatically by a device operating as a quantizer or, as in our example, by the measurer.

3.3 Instrument con�guration: classi�cation module

By composing the matching function cP and the recognition function ρP , a function which attributes values in the

instrument-speci�c, private scale to observable properties is obtained.

{P ∗
j } ρP

��
{Pm}

cP
;;

ρP ◦cP
// {pj}

ιP

bb

The relation pj = ρP ◦ cP (Pm) states the empirical and informational fact that the value corresponding to the

indication P ∗
j is the value corresponding to the observed position Pm. We call the triple 〈{Pm}, {pj}, ρP ◦ cP 〉 a

classi�cation module for P . It is worth noting that the classi�cation module might include auxiliary classi�cation

modules and transduction modules, but these are implementation details that do not modify the basic structure we

are proposing.

De�nition 3. (Classi�cation module for P ): 〈{Pm}, {pj}, ρP ◦ cP 〉

The classi�cation module wraps the matching module, which determines the relevant component of the state of

the instrument, and the private scale module, which encodes the state component with an identi�er, and therefore is

the informational core of the measuring instrument. It conveys, as we will see later, explicit and implicit information

1. on the instrument scale;

2. on the measurement principle [18, def. 2.4], characterized by the e�ect of the measurand on the property P ;

3. on the measurement procedure [18, def. 2.6], characterized by the measurement principle and the matching

procedure.
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By coupling this instrument-related classi�cation module, having at its core a private scale of lengths, with a struc-

turally similar classi�cation module, whose core is a public scale of temperatures, the measurement of temperatures

by means of the thermometer becomes possible, as an instrument-mediated process that associates temperatures

Θa to values of temperature θi. By anticipating the outcomes of the analysis that we are going to develop, the

whole system can be depicted as in the following �gure, where, in symmetry with the upper triangle, the lower

triangle includes measurands Θa, reference temperatures Θ∗
i , and values of temperature θi.

{P ∗
j } ρP

��
{Pm}

cP
;;

ρP ◦cP
// {pj}

ιP

bb

{Θa}

cΘ ##

ρΘ◦cΘ // {θi}
ιΘ

||
{Θ∗

i }
ρΘ

II

Despite its complexity, the symmetric structure provides some insights into two key features of measurement:

• it connects a private scale (upper side of the diagram) and a public scale (lower side); the connection is created

by the empirical cause-e�ect relationship between temperatures to be measured Θa and instrument observable

properties Pm: this provides a condition for the justi�cation of the hypothesis that the connection is reliable,

and therefore that measurement results are trustworthy;

• it connects an empirical component (left side) and an informational component (right side): the connection

is created by the private scale and the public scale, which are built under controlled conditions: this provides

another condition for the justi�cation of the hypothesis that the connection is reliable, and therefore again

that measurement results are trustworthy.

The next sections introduce the second, temperature-related, classi�cation module and on this basis a model of

ideal direct measurement is obtained.

4 First model: ideal pre-measurement

A mercury thermometer is sensitive to temperature in such a way that, when it is properly put in interaction

with an object, it changes its state in function of the temperature of the object, with the mercury �owing in the

capillary and changing the position of its upper surface. After the transient, the steady state position allows us to

represent, via the private scale of the instrument, the temperature of the object by means of a value. Since the

obtained information is instrument-speci�c, and then lacks the condition of intersubjectivity which characterizes

measurement [22], we call this process pre-measurement [11]. In addition, since measurement uncertainty is not

taken into account yet, what is presented in this section is an ideal model of pre-measurement.

4.1 Ideal pre-measurement: transduction module

In the interaction with an object a, with temperature Θa in a set {Θa} of measurable temperatures, the mercury

in the thermometer changes its volume, so that the position of the mercury upper surface becomes Pm. This is a

physical process, based on a transduction e�ect, in this case of thermal expansion of bodies. The instrument is then

partly characterized by the triple
〈
{Θa}, {Pm}, fΘ

P

〉
, where
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• {Θa} is a set of properties that are inputs of the transduction function, in this case a set of temperatures that

given objects can have;

• fΘ
P : {Θa} → {Pm} is a transduction function, such that Pm = fΘ

P (Θa) is the property that results from

transducing the property to be measured by means of the instrument; fΘ
P is typically a many-to-one function.

The relation Pm = fΘ
P (Θa) states the empirical fact that the temperature Θa has been transduced into the position

Pm, so that Pm is assumed to be an e�ect of Θa, mediated by the thermometer and where the context is left

implicit. In this sense, Pm is the transduced property, as obtained by a transduction e�ect chosen so as to make the

transduced property observable. We call the triple
〈
{Θa}, {Pm}, fΘ

P

〉
a transduction module.

De�nition 4. (Transduction module):
〈
{Θa}, {Pm}, fΘ

P

〉
The simplest model assumes that Pm depends only on Θa, thus considering the instrument to be perfectly

selective and stable, and as such independent in its behavior of any in�uence property, such as environment pressure:

whenever bodies of the same temperature interact with the thermometer, the same position of the mercury in the

capillary is obtained as the result. This makes the transduction module an appropriate model of the assumed

deterministic transduction.

Remark 4. The function fΘ
P is the cause-e�ect relationship assumed to exist between properties of objects and

observable properties of the instrument, which are empirical entities. It is not assumed that the analytical form of

this function is known. However, even in the case its analytical form were assumed to be fully known, for example

as a linear dependence of Pm on Θa with known parameters (thus re�ecting an ideal behavior of the transducer

operating under ideal conditions), its output would remain an empirical entity. For producing information on Θa

in the form of values, the instrument scale must be exploited.

4.2 Ideal pre-measurement: evaluation

The instrument is designed so as to transduce an input property into an output property that is observable, in the

sense discussed above, and therefore so that the input temperatures Θa can be associated to the indications P ∗
j via

the composed function cP ◦ fΘ
P .

{P ∗
j } ρP

��
{Pm}

cP
;;

{pj}
ιP

bb

{Θa}

fΘ
P

OO
cP ◦fΘ

P

QQ

The relation P ∗
j = cP ◦ fΘ

P (Θa) states the empirical fact that the reference position P ∗
j is the matched indication

(hence a given mark on the capillary) corresponding to Θa. In fact, the aim of the instrument is to transduce an

input property into an output property in such a way that distinctions in the properties under measurement can

be inferred from observable distinctions in the indications. In addition, by composing cP ◦ fΘ
P with the recognition

function ρP that results from the instrument con�guration a pre-measurement is obtained.
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{P ∗
j } ρP

��
{Pm}

cP
;;

{pj}
ιP

bb

{Θa}

fΘ
P

OO

ρP ◦cP ◦fΘ
P

AA

The relation pj = ρP ◦cP ◦fΘ
P (Θa) states the empirical and informational fact that pj is the value that identi�es

Θa in the instrument-related private scale. In pre-measurement, this allows us to obtain a private value for the

property under measurement, a conclusion that is expressed by the following

Claim 1. Θa is represented by pj in private-scale if and only if pj = ρP ◦ cP ◦ fΘ
P (Θa).

Thus, until instrument-related information is acceptable, temperatures are evaluated with respect to the private

scale, and are then associated to values of position.

4.3 The stages of the ideal pre-measurement

The previous analysis shows that an ideal pre-measurement is a process performed through the following stages:

1. the preliminary construction of a private scale, which is conventional, even though constrained by the available

knowledge about the features of the measuring instrument;

2. the application of a transduction module, which is an empirical process based on physical causation, and so

it is to be accurately modeled in order to estimate its import on the information that will be produced;

3. the application of a matching module, which is basically an empirical process of quantization, and so it is to

be accurately modeled in order to estimate its import on the information that will be produced;

4. the application of the private scale, which is a theory-based process, since the recognition function ρP , initially

just the inverse of the identi�cation ιP , is computed at subsequent stages under the hypothesis of the stability

of the instrument.

According to this model, a pre-measurement is able to produce object-related, i.e., objective, information. Whenever

private information is su�cient, the fact that a pre-measurement conveys information on the temperature Θa in

terms of a value of position pj in private-scale is not a problem.

5 Instrument calibration

While pre-measurement results are non-transferable, because instrument-speci�c and therefore private, measurement

aims at producing information which is not only object-related � something that ideal pre-measurement guarantees

� but also subject-independent, i.e., intersubjective, because instrument-independent and therefore publicly inter-

pretable. To this goal measurements performed according to a direct method require the measuring instruments to

be calibrated against a public scale.
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5.1 Instrument calibration: public scale

Some objects are chosen, in a set of easily accessible or reproducible objects, whose temperatures are su�ciently

stable, so that such temperatures can be identi�ed by reference to them. We call these objects reference objects or

also, more customarily, measurement standards, their temperatures reference properties, and the values associated

to them reference values.

Remark 5. In the case the property under measurement is embedded in an algebraically su�ciently rich structure,

measurement standards are produced as realizations of the de�nition of the unit of that property, and of some

multiples or submultiples of the unit, either as primary realizations or derived by existing realizations through

calibration in a traceability chain. This is the case of the historical development of the measurement of temperature

[5], in which sometimes only two reference temperatures have been chosen (e.g., of the melting and the boiling

points of water).

As in the case of the private scale, this can be formalized by a triple 〈{θi}, {Θ∗
i }, ιΘ〉, where

• {Θ∗
i } is a set of empirically distinguishable properties, the reference temperatures, that are public references

of temperature;

• {θi} is a set of identi�ers, that are reference values attributed to temperatures;

• ιΘ : {θi} → {Θ∗
i } is an identi�cation function, such that Θ∗

i = ιΘ(θi) is the reference property identi�ed by

the value θi; since the set {θi} is chosen so as to make each indication uniquely identi�able, this function is

bijective and instrument-independent.

The inverse of the identi�cation function ιΘ models then the recognition of the value that identi�es each reference

property Θ∗
i , and so it can be viewed as a recognition function ρΘ : {Θ∗

i } → {θi}, such that θi = ρΘ(Θ∗
i ) is the

value recognized for the reference property Θ∗
i .

{Θ∗
i }

ρΘ

((
{θi}ιΘ

oo

The ιΘ - ρΘ cycle is again crucial, since it constitutes, complementary to the ιP - ρP cycle, a link between the

empirical realm and the informational realm in the model of the property intended to be measured. Under the

hypothesis that each element in {Θ∗
i } is stable, the triple 〈{θi}, {Θ∗

i }, ιΘ〉 constitutes an instrument-independent,

and therefore in principle public, scale.

De�nition 5. (Public scale module): public-scale
def
= 〈{θi}, {Θ∗

i }, ιΘ〉

Once a scale is de�ned and made publicly available, the problem of linking it with the private scale of the

instrument, as made possible by the transduction module of the instrument, arises. The operation that solves the

problem, by turning private pre-measurement into public measurement, is the instrument calibration.

5.2 Instrument calibration: calibration module

When both the private scale and the public scale are available, the transduction fΘ
P is exploited for identifying

their relation: this is the goal of instrument calibration. The instrument is put in interaction with objects whose

temperature is an element of {Θ∗
i }, and the process is followed exactly as in the case of a pre-measurement, thus

obtaining an element of {P ∗
j } and then an indication value pj for each Θ∗

i . Di�erently from what happens in a

pre-measurement, however, in this case the temperature value θi is also known of the temperature Θ∗
i of the object

with which the instrument interacts. Hence for each temperature Θ∗
i a pair of values

12



〈θi, pj〉 =
〈
ρΘ(Θ∗

i ), ρP ◦ cP ◦ fΘ
P ◦ sΘ(Θ∗

i )
〉

i.e., 〈public identi�er, private identi�er〉 , is obtained, where sΘ is the function that maps each element of {Θ∗
i }

into itself, intended as an element of {Θa}, i.e., the canonical injection of {Θ∗
i } into {Θa}. By repeating the

process for all elements of {Θ∗
i }, a set {〈θi, pj〉} of pairs is constructed, which is the extensional de�nition of the

calibration function ϕΘ
P , pj = ϕΘ

P (θi), that is ρP ◦ cP ◦ fΘ
P ◦ sΘ(Θ∗

i ) = ϕΘ
P ◦ ρΘ(Θ∗

i ). Note that, according to [18,

def. 4.31], a calibration curve is a �relation between indication and corresponding measured quantity value�, hence

the inverse of ϕΘ
P . The rationale for calling ϕ

Θ
P �calibration function� is that it is this function that is constructed

while calibrating the instrument, while, as shown below, its inverse is used in performing measurements by means

of the thus calibrated instrument.

{P ∗
j } ρP

��
{Pm}

cP
;;

{pj}
ιP

bb

{Θa}

fΘ
P

OO

{θi}

ϕΘ
P

OO

ιΘ

||
{Θ∗

i }
ρΘ

II

sΘ

cc

The identity pj = ϕΘ
P (θi) states the empirical fact that the indication value pj corresponds to the reference value

θi, where the key point here is that a relation between informational entities is derived from an empirical fact. We

call the triple
〈
{θi}, {pj}, ϕΘ

P

〉
a calibration module.

De�nition 6. (Calibration module):
〈
{θi}, {pj}, ϕΘ

P

〉
This highlights that calibration is the informational counterpart of transduction, so that the calibration function

can be intended as the mathematical model of the transduction. By exploiting an instrument whose behavior has

been modeled by ϕΘ
P , a measurement is expected to produce a temperature value θi from an indication value pj , thus

requiring ϕΘ
P to be invertible. A con�gured measuring instrument equipped with a calibration function obtained in

reference to a public scale is a calibrated instrument, which can be used to measure temperatures and to produce

public information.

Remark 6. In the case the property under measurement and the instrument indications are embedded in an alge-

braically su�ciently rich structure and the transduction is modeled so that ϕΘ
P is a parametric analytical function,

the calibration could only require to obtain the pairs 〈θi, pj〉 for identifying the values of the parameters � e.g., two

pairs in the case ϕΘ
P is linear.

The invertibility condition on ϕΘ
P is crucial for the instrument to be used to attribute values to temperatures,

since this is possible only if the inverse ϕPΘ = (ϕΘ
P )−1 of the calibration function ϕΘ

P can be constructed. In turn,

this requires the selection of a public scale which is not �ner than the private scale. Still, since both fΘ
P and cP

are in principle many-to-one this is a delicate issue, also connected to the fact that measurement results are to be

intended as involving uncertainty. In fact, if the composite cP ◦fΘ
P is many-to-one, then two reference temperatures

can be mapped to the same indication, and so two reference values can be associated via ϕΘ
P to the same indication

value. In order to avoid this, sets of reference values can be put in one-to-one correspondence with indication values,

but this implies that the measurement result is to be expressed in terms of best reference value and uncertainty (a
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more encompassing position is mentioned in [27, p.3758], where �an inverse, partial inverse, approximate inverse or

pseudoinverse� of the calibration function is allowed).

6 Second model: ideal measurement

Given the sequence

1. instrument con�guration (including private scale construction),

2. pre-measurement,

3. instrument calibration (including public scale construction),

measurement can be characterized as a pre-measurement followed by the application of the calibration function.

Since we are still not taking measurement uncertainty into account, we call this process an ideal measurement.

6.1 Ideal measurement: evaluation

The instrument is designed so as to be able to attribute a value to an input property. This is achieved by making the

calibrated instrument interact with the property to be measured Θa, thus obtaining a measured value θi according

to the following procedure:

1. via the transduction function fΘ
P the temperature Θa is associated with a transduced position Pm = fΘ

P (Θa);

2. via the matching function cP the transduced position Pm is associated with a reference position P ∗
j =

cP (Pm) = cP ◦ fΘ
P (Θa) in the private scale, i.e., an instrument indication;

3. via the recognition function ρP the indication P ∗
j is associated with an instrument-speci�c value pj = ρP (P ∗

j ) =

ρP ◦ cP ◦ fΘ
P (Θa), i.e., an indication value;

4. via the inverse of the calibration function, ϕPΘ = (ϕΘ
P )−1, the instrument-speci�c value pj is associated with

an instrument-independent value θi = ϕPΘ(pj) = ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P (Θa), i.e., a value of temperature.

{P ∗
j } ρP

��
{Pm}

cP
;;

{pj}
ιP

bb

ϕP
Θ

��
{Θa}

fΘ
P

OO

ϕP
Θ◦ρP ◦cP ◦fΘ

P //

cΘ ##

{θi}
ιΘ

||
{Θ∗

i }
ρΘ

II

The relation θi = ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P (Θa) states the empirical and informational fact that θi is the value that

identi�es Θa in the public scale. We call the �nal triple
〈
{Θa}, {θi}, ϕPΘ ◦ ρP ◦ cP ◦ fΘ

P

〉
the measurement module.

De�nition 7. (Measurement module):
〈
{Θa}, {θi}, ϕPΘ ◦ ρP ◦ cP ◦ fΘ

P

〉
This is the module that allows us to obtain a public value for a property under measurement, a conclusion that

is expressed by the following
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Claim 2. the value of Θa is θi in public-scale if θi = ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P (Θa)

This is the public counterpart of Claim 1, with the di�erence that here the double implication does not hold, given

that θi could be obtained as the value of Θa in public-scale by means of many di�erent measuring instruments,

and therefore independently of ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P . Let us de�ne the following direct measurement function.

De�nition 8. µΘ
def
= ϕPΘ ◦ ρP ◦ cP ◦ fΘ

P

Then we obtain µΘ(Θa) = θi, i.e., the value of Θa is θi in public-scale, which is usually written in the standard

form

Θa = θi in public-scale

In fact, µΘ is the black box model of the behavior of a calibrated measuring instrument: by opening the box the

structure ϕPΘ◦ρP ◦cP ◦fΘ
P is revealed. Furthermore, by exploiting the identi�cation function ιΘ, a matching function

cΘ : {Θa} → {Θ∗
i } is obtained, so that Θ∗

i = cΘ(Θa) = ιΘ ◦ ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P (Θa), stating the fact that through

measurement the reference temperature corresponding to Θa has been identi�ed to be Θ∗
i .

{P ∗
j } ρP

��
{Pm}

cP
;;

{pj}
ιP

bb

ϕP
Θ
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fΘ
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OO
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||
{Θ∗

i }
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Thus the well-known claim is justi�ed that the core of a direct measurement process consists in a comparison

between the property under measurement and the reference properties in a public scale.

Remark 7. This model is su�ciently general so as to include as speci�c cases the measurements in which the property

under measurement is directly compared with the reference properties of the public scale, as in the example of the

measurement of mass by means of a two pan, equal arm balance. In these cases the structure of the process is

simpler: once the public scale has been constructed, the empirical stage of the process consists in the matching

cΘ : {Θa} → {Θ∗
i }, so that the direct measurement function is de�ned as µΘ

def
= cΘ ◦ ρΘ. Thus, the empirical work

is entirely done by the recognition module for Θ.

6.2 The stages of the ideal measurement

The previous analysis shows that measurement is a process performed through the stages 1-4 of pre-measurement,

as in section 4.3, and:

5. the preliminary construction of a public scale module, which is partly conventional and partly theoretical,

being based on the choice of the reference objects, the reference properties, and the reference values, and the

assumption of the stability of the reference objects;

6. the application of a calibration module, which constitutes the model of the transduction and is computed at

a di�erent stage with respect to its de�nition, so that its validity depends on the hypothesis of the stability

of the instrument, and therefore is theoretical.
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According to this ideal model, a measurement is able to produce both object-related, i.e., objective, and subject-

independent, i.e., intersubjective, information.

transduced
property

private
reference

private
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property
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public
value
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matching recognition
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recognitionmatching

This is the outcome of a process whose structure has some signi�cant symmetries.
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As mentioned above, the functions we have considered model processes that are conceptually independent of

each other, so that the entity modeled by a composed function only depends on the models of the component

functions: hence only the non-composed functions have been considered in modeling measurement.

6.3 An extension: including objects in the model

While the entities taken into account so far are individual properties, i.e., properties of objects or values of properties,

the model can be easily extended so as to include also the objects having the relevant properties, by introducing:
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• a set {a} of objects having temperature, a subset of which is {a∗i }, the set of reference objects whose temper-

atures are in {Θ∗
i }, chosen for setting the public scale; we call {a∗i } a realization of the public scale;

• a set {m} of columns of mercury in the thermometer, a subset of which is {m∗
j}, the set of columns whose

positions are in {P ∗
j }, chosen for setting the private scale (note then the distinction between a column of

mercury � an object � and the position of its upper surface � a property); we call {m∗
j} a realization of the

private scale.

On this basis the model is extended by including:

• the function hΘ : {a} → {Θa}, that associates objects that can interact with the thermometer to their

temperatures;

• the function hP : {m} → {Pm}, that associates columns of mercury to their positions;

• the functions ≈Θ: {a} → {a∗i } and ≈P : {m} → {m∗
j}, that are object-related analogous of the matching

functions cΘ and cP respectively.

{m∗
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Since in a measurement process objects are compared with respect to their properties, this extension, though

still ideal, increases the realism of the model, which remains purely structural as the dynamical character of the

measurement process is not explicitly considered yet. This enriched structure enables us more e�ectively to compare

the present model of measurement with models proposed in previous works.

7 Comparison with recent models in the literature

In the previous sections we have progressively built a structural model of an ideal direct measurement in terms

of the properties involved in the process. In this section we compare the proposed model with some other models

presented in the recent scienti�c literature. We will show that the model we have proposed constitutes both a

generalization and a completion of these previous models.

7.1 Comparison with the representationalist models

The representationalist model assumes that measurement is a mapping from empirical objects to informational

entities such that relevant relations between empirical objects are preserved in the mapping by relations between

numerical entities (representational theories are in fact usually presented in terms of numerical entities, as for ex-

ample in [28, p.54]: the generalization to informational entities makes the analysis clearer and more consistent).

Thus, measurement consists in constructing and applying a measurement scale, i.e., a morphism from an empirical

relational system to an informational relational system, so as to allow us to encode information about objects under
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measurement in terms of numbers or other informational entities. Accordingly, measurement is based on a theory

proving that some relations among empirical objects can be represented by some relations among informational

entities, where a consistent representation requires to ascertain existence and uniqueness conditions on the con-

struction of a measurement scale. In turn, these conditions are presented in terms of an existence theorem, stating

that there exists a map from the relevant empirical relational system to an informational relational system, and a

uniqueness theorem, identifying the class of transformation up to which the mapping is unique.

The representationalist model only captures the abstract structure of a measurement process [21], by assuming

the existence of the matching module 〈{Θa}, {Θ∗
i }, cΘ〉 and focusing on the de�nition of the scale. It is then,

essentially, a model of the measurand-related recognition function.

{Θ∗
i }

ρΘ

((
{θi}ιΘ

oo

In particular, the focus is on the (possibly idealized) empirical conditions that the empirical structure on the set

{Θa}, extensionally interpreted as a set of equivalence classes of objects, is to satisfy in order to be represented by a

numerical structure on the set {θi}. To wit, if the set of values {θi} is part of an informational structure determined

by an ordering relation, the representationalist model requires that some empirical procedures exist which allow us

to compare the objects carrying properties in {Θa} is such a way that the axioms de�ning the order relation are

satis�ed. In this sense, the model is centered on the scale construction and the empirical conditions which ensure

the possibility of such construction, and as such it abstracts from the role of measuring instruments, so that it

applies indi�erently to direct and indirect measurement. The present model of measurement is then a development

of the representational viewpoint to the case of direct measurement.

7.2 Comparison with Giordani and Mari's model

In previous papers we proposed models of measurement with and without transduction. Speci�cally, in [12] the

measurement process is decomposed into an experimental component consisting in the identi�cation of the equiv-

alence class which a given empirical object belongs to, or of the corresponding property, as typically obtained by

comparison, and a representational component, consisting in the assignment of a value from an informational system

to the determined equivalence class. This is a �rst improvement of the representational viewpoint, as the model

integrates both the comparison module and the scale.

{a}
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// {Θa}

cΘ ##

µΘ // {θi}
ιΘ

||
{a∗i } oo hΘ

// {Θ∗
i }

ρΘ

II

In addition, under the ideal condition that all properties in {Θ∗
i } are instantiated by the reference objects in

{a∗i }, so that the set of reference properties is in one-to-one correspondence with the standards that realize the

de�nitions of such properties, the crucial notion of instrument calibration is imported into the picture.

In [13] the measurement process is further analyzed, in order to account for transduction, and decomposed into

an empirical stage, where the interaction between the object and the instrument is accomplished and the property

to be measured is related to an indication, and an informational stage, where the evaluation of the property is

achieved and the indication value is related to a property value. Accordingly, obtaining a property value is a three

step process:

1. a mapping from properties to indications, given by the composition of a transduction and a matching, cP ◦fΘ
P ;
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2. a mapping from indications to indication values, given by the recognition function ρP ;

3. a mapping from indication values to property values, given by the inverse ϕPΘ of the calibration function.
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Hence, the resulting value is precisely θi = µΘ(Θa) = ϕPΘ ◦ ρP ◦ cP ◦ fΘ
P (Θa). The present model is built on this

analysis.

7.3 Comparison with Rossi and Crenna's model

In a recent paper by Rossi and Crenna [31] the following model is considered (up to inessential changes of tags).

(A,�)

(P ∗
j ,�)

(θi,≥)

◦ a∗i
◦ a

◦ θi
◦ P ∗

j

φ
φ−1
S

m

γ

In this picture

1. φ maps objects to indications, so that φ = cP ◦ fΘ
P ◦ hΘ;

2. φS maps reference objects to indications, so that again φS = cP ◦ fΘ
P ◦ hΘ, where hΘ is restricted to {a∗i };

3. m maps reference objects to values , so that m = ρΘ ◦ hΘ;

4. γ maps objects to values , so that γ = m ◦ φ−1
S ◦ φ.

It is then not di�cult to construe the schema along the following lines.
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This can be then intended as a black box representation of the process, providing some basic conditions to be

ful�lled. By opening the box (the need of opening the box is acknowledged also in [31], when it is stated that

in modeling observation the primary interest is in considering the property Θa of the object as the input of the

measurement process), its correspondence with our model is easily recovered.
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Of course, opening the box reveals the structure of the process and therefore provides a more explicit justi�cation

of its claimed trustworthiness. Furthermore, it is in some cases necessary if the process constraints are to be

considered. For example, Rossi and Crenna's model only works on the assumption that the set of the indications

has the same cardinality as the set of reference objects, whose justi�cation is in the fact that, for the calibration

function to be invertible, {P ∗
j } has to be of the same cardinality as the set {Θ∗

i } of the reference properties.

By contrast, it is not necessary for {Θ∗
i } to have the same cardinality as {Θa}, since it is possible for both the

transduction function and the matching function to be many to one.

7.4 Comparison with Morawski's model

Finally, let us consider the model of measurement proposed by Morawski in [27] and primarily adapted to sensor-

based instruments. This is based on mathematical models of (i) the measurand, (ii) the conversion process, mapping

the measurand to the raw result of measurement, and (iii) the reconstruction process, mapping the raw result of

measurement to the �nal result of measurement, which is the value attributed to the measurand. Morawski's model

is intended to capture both direct and indirect measurement. Since we are interested in the structure of direct

measurement, the elements concerning the identi�cation of the system under measurement, the de�nition of the

measurand, and the computation related to the reconstruction of the measurand in an indirect measurement are

abstracted away.

In its ideal version, where in�uence properties and uncertainties are not considered, the conversion is a map C

from {Θa} to {P ∗
j } that represents the transfer of information carried by the measurand into the domain of signals,
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while the reconstruction is a map R from {P ∗
j } to {θi} that represents everything that is required to establish the

�nal result of measurement on the basis of the raw result, the mathematical model of conversion, and the available

information on the measurand. Calibration is interpreted here as identi�cation of the parameters of maps C and

R.

{Θa}

{P ∗
j }

{θi}

mathematical model
of conversion: C

mathematical model
of reconstruction: R

measurement

Again, by opening the box some aspects of the model we are proposing become evident.

{P ∗
j }

R

��
{a}

fΘ

// {Θa}

C

66

cΘ ##

µΘ // {θi}
ιΘ

||
{a∗i } oo fΘ

// {Θ∗
i }

ρΘ

II

Hence, C = cP ◦ fΘ
P and R = ϕPΘ ◦ρP . In addition, our model highlights that the reconstruction function allows

us to move from the empirical realm of properties identi�ed by address to the informational realm of properties

identi�ed by value, a feature that remains hidden if both C and R are modeled in terms of mathematical functions.

8 Third model: actual measurement

The model introduced so far is ideal, because the transduction has been assumed dependent only on the property to

be measured, and the private scale and the public scale have been assumed to be stable. In this section we include

some non-ideal conditions in the picture, such as in�uence properties and instabilities of the scales, and account

for them in terms of uncertainties that a�ect the process and its results. This allows us to provide a more realistic

interpretation of a direct measurement. In accordance with the choice of focusing on the structure of the process

once the object under measurement is coupled with the measuring instrument in a speci�c environment, we do not

consider here the problems related to the way the object and the environment are to be prepared for making the

coupling possible in the expected conditions.

8.1 Measurement as a process a�ected by uncertainty

The result of an ideal measurement is the attribution of one value to the measurand, corresponding to the maximally

speci�c information obtainable on the measurand given the adopted public scale (note that this characterization

assumes measurement uncertainty to be relative to the public scale). In non-ideal conditions the measurement of a

given property may lead instead to a multiplicity of values, possibly encoded as a probability distribution over the

set {θi}. Uncertainties in measurement can be classi�ed in several ways (see, e.g., [16, clause 3.3.2] and [13, p.2149]):

the modular structure of the model we are presenting provides a further, e�ective criterion of classi�cation, if �nally
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interpreted in a dynamic context, in which the stages of the extended process of measurement are considered. In each

stage some uncertainties may arise, and the uncertainty of the measurement result derives from their composition

(how to combine uncertainty components may be a complex subject, also due to the fact that some components

could be correlated, and the related literature is wide; it is a subject that we take for granted here: starting from

[16] and [17], see, e.g. [20]).

As preliminary steps, we assume that a public scale for the measurand has been de�ned and a measuring

instrument has been con�gured, so that in particular its private scale has been de�ned in turn. The following stages,

that lead to produce a measurement result, develop according to a sequence that is only partially constrained.

• Measurand de�nition. In the measurements usually performed in daily situations the measurand, i.e., the

property intended to be measured and to which one or more values will be attributed [18, def. 2.1], is

just the property with which the measuring instrument is made interact. This is an implicit condition of

ideality, the same that we have assumed so far by using the same symbol Θa for the property applied to the

transduction function fΘ
P and the property applied to the direct measurement function µΘ. On the other hand,

this de�nition makes the obtained information useful only in the here-and-now condition of the measurement,

thus preventing a more general use of the reported information. For example, in measuring the temperature of

a certain �uid the measurand would be the temperature of the portion of the �uid with which the thermometer

interacted in the unknown conditions of the environment at the moment of the interaction. The measurand

could be then de�ned by description in reference to given conditions of the object and the environment, for

example under the assumption that the �uid is thermally homogeneous and at a given environmental pressure.

This makes the information more transferable, at the price of a non-null de�nitional uncertainty, that takes

into account the discrepancies between the conditions speci�ed in the measurand de�nition and the actual

conditions of the interaction with the measuring instrument (the measurand de�nition and its in�uence on

the design and the operation of measurement is a subject that still requires investigation � see, e.g., [2] and

[24]).

• Dissemination of the public scale. Given the de�nition of the reference properties Θ∗
i (thus in particular of the

unit in the case of ratio quantities), in this stage the de�nition is realized in the reference objects a∗i by means

of which the measuring instrument will be calibrated. While the primary realizations derive from the mises en

pratique (www.bipm.org/en/publications/mises-en-pratique), in the daily practice instruments are calibrated

against working measurement standards, connected to the primary standards via a metrological traceability

chain. Along the chain and across the time, inaccuracies and instabilities may a�ect the reproduction of the

reference properties Θ∗
i , in such a way that the reference properties Θ

∗(t)
i of the reference objects against

which the instrument is calibrated at a given time t may di�er from Θ∗
i . This requires us to parameterize the

recognition function with respect to time t and to acknowledge that generally the resulting function ρ
(t)
Θ is

only uncertainly known, given the uncertainty that a�ects the function d(t)
Θ that models the discrepancy at t

between Θ
∗(t)
i and Θ∗

i .

{Θ∗(t)
i }

ρ
(t)
Θ

//

d
(t)
Θ

��

{θi}

ιΘqq{Θ∗
i }

• Calibration. At a given time t1 the instrument is calibrated against some reference objects with reference

properties Θ
∗(t1)
i . This requires the instrument to interact with such reference objects, the reference properties

Θ
∗(t1)
i to be transduced, and the instrument indications P ∗

j produced by Θ
∗(t1)
i to be classi�ed. Since both

transduction and classi�cation are empirical processes, in�uence properties and instrument instabilities may
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a�ect the instrument indication. Hence both the transduction function and the classi�cation function need

to be parameterized with respect to the time t in which measurement is performed, thus obtaining a time

dependent classi�cation function ρ
(t)
P ◦ c

(t)
P and a conditioned transduction function f

Θ,X(t)
P , where X(t) is

the set of in�uence properties that are known a�ecting the transduction. This dependence on time takes

instabilities into account.

• Transduction and classi�cation. The instrument is put in interaction with the object a at a time t2 which is

di�erent from the calibration time t1. This implies that, generally, the instrument may behave at measurement

time and at calibration time in di�erent way, fΘ,X(t1)
P 6= f

Θ,X(t2)
P and c(t2)

P 6= c
(t1)
P . As mentioned above, the

dependence of these functions on time takes instabilities into account, and makes them only uncertainly

known. Moreover, the empirical nature of the processes may make their results problematic, because the

transduction could not stabilize to a �xed position and there could be errors in matching Pm with respect to

{P ∗
j } (the so-called �reading errors� in the case of traditional instrument with analogue scales). Finally, also

the private scale could be a�ected by instabilities, so that ρ(t2)
P 6= ρ

(t1)
P , where the function d(t)

P that models

the discrepancy at t between P ∗(t)
i and P ∗

i is only uncertainly known.

{P ∗
j }

{P ∗(t)
j }

ρ
(t)
P

//

d
(t)
P

OO

{pj}

ιP
mm

• Measurand evaluation. A value for the measurand is obtained by feeding the indication value into ϕPΘ, which

in the ideal case is just the inverse of the calibration function. Still, in this context some corrections can be

introduced, that take into account the non-ideal conditions of the empirical stages of the process. For example,

it could be acknowledged that temperatures and mercury positions are not exactly proportional, due to the

fact the capillary in which the mercury �ows is not perfectly cylindrical or due to second-order e�ects related

to in�uence properties. Thus, the function ϕPΘ is to be intended as a reconstruction function ϕ
P,X(t)
Θ , which

also depends on the values assigned to the in�uence properties. While in the ideal case the measurement

function is obtained by inverting the transduction function fΘ,X(t)
P , where the only input property is Θa, in

the actual case, ϕP,X(t)
Θ is obtained by �nding an inverse, a pseudo-inverse, or an inverse relative to a limited

domain, of the transduction function fΘ,X(t)
P .

This generalization of the model, once all the sources of uncertainty are taken into account, is su�cient for illus-

trating the main characteristics of an actual measurement and for identifying the sources of the uncertainty of the

measurement result.

8.2 Actual structure of measurement

By taking these further elements into account, we obtain a more general model of actual measurement.
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This diagram highlights in particular that the matching modules are more complex here than in the ideal case.

In the case of the instrument matching, the comparison between observable properties Pm and reference indications

P ∗
j results from the composition of two functions, cP = d

(t)
P ◦ c

(t)
P , due to the fact that the actual matching is with

reference indications P ∗(t)
j , the associations with ideal reference indications P ∗

j being computed via the discrepancy

function d
(t)
P . An analogous complexity arises for the public scale matching. It is also worth noting that this

analysis is consistent with the characterization of measurement uncertainty proposed by Sommer and Sieber in

[33], where what they call the source unit can be viewed as carrying the uncertainty related to the standards in

the calibration module, while the transformation unit and the indication unit can be viewed as dynamical versions

of the transduction module and the calibration module of the present model. The main di�erence between these

approaches consists in the fact that Sommer and Sieber based their study on a causal model of measurement, while

the model proposed here is structural, a choice that makes it possible to introduce a comprehensive understanding

of measurement which integrates the empirical, and so causal, aspect of the process with the informational aspect,

that is crucial for obtaining measurement results. As just shown, this kind of model allows us to discuss in one

framework the uncertainties derived from both causal interactions and representation.

8.3 Examples

Let us show how this model works in three other cases of direct measurement. Since we are interested in highlighting

structural similarities, we present only the ideal models.

Example 1. Blood type measurement.

Blood type is a property of blood, related to the presence or absence of speci�c substances located on the surface

of red blood cells. It is a nominal property, which allows us to categorize blood samples according to several di�erent

classi�cation systems. Here we will consider the ABO system, which is based on a set {A,B,AB,O} of four classes
determined by the presence or absence of the A-antigen and B-antigen, where O is the class of red blood cells on

which neither antigen is located. Antigens are found in human blood together with antibodies in such a way that

the A-antigen is associated to the B-antibody and the B-antigen is associated to the A-antibody. In addition, each

antibody is able to agglutinate the corresponding antigen, thus generating reactions that can be observed. Since

the presence of the A-antigen corresponds to the property P ∗
A of being agglutinated in a certain kind of solution, the
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presence of the B-antigen corresponds to the property P ∗
B of being agglutinated in another kind of solution, and so

on, the various reactions allow us to measure blood type by placing a blood sample in solutions containing di�erent

kinds of antibodies. The entire process is captured by our model without di�culty. Let a be a blood sample.

1. Classi�cation module:

(a) {P ∗
j } = {P ∗

A, P
∗
B , P

∗
AB , P

∗
O}, where P ∗

j is the reference property of being agglutinated in a certain set of

solutions;

(b) {pj} = {pA, pB , pAB , pO};

(c) ρP is the function such that ρP (P ∗
A) = pA, ρP (P ∗

B) = pB , and so on;

(d) {Pm} is the set of properties of being agglutinated in a certain set of solutions;

(e) cP is a comparison process relative to sets of states of agglutination.

2. Measurement module:

(a) Θ is blood type, i.e., the property of having a speci�c antigen;

(b) {θi} = {A,B,AB,O};

(c) fΘ
P is the agglutination e�ect process;

(d) ϕPΘ is such that ϕPΘ(pA) = A, ϕPΘ(pB) = B, and so on;

(e) ρP and cP are as above.

In this case, the calibration function ϕΘ
P is extensionally de�ned by (i) making a set {Θ∗

i } of reference standards,
i.e. blood samples whose type is known, interact with the instrument and (ii) registering the relevant values in {pj}
on the basis of the kind of observed properties in {P ∗

A, P
∗
B , P

∗
AB , P

∗
O}.

Example 2. Perceived quality measurement.

Students can be asked to evaluate the quality of a university course on a Likert scale, where each student is

then part of the measuring instrument, together with a sheet presenting a question that explains what is intended

to be evaluated and a printed sequence of 5 checkboxes, identi�ed from very bad to very good. The measurement

procedure speci�es that each student has to check one and only one of such boxes.

1. Classi�cation module:

(a) {P ∗
j } is the sequence of checkboxes;

(b) {pj} = {1, ..., 5} is the set of ordinal numbers that identify each a checkbox;

(c) ρP maps each checkbox to an ordinal number;

(d) {Pm} is the set of the possible answers that can be given to the question;

(e) cP is identity function, given that the transduction already maps to the reference properties.

2. Measurement module:

(a) Θ is perceived quality;

(b) {θi} is an ordered set of 5 values of quality, very bad to very good ;

(c) fΘ
P is the process of checking one box;

(d) ϕPΘ maps each ordinal number that identi�es a checkbox to a value of quality;

(e) ρP and cP are as above.
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This is an example of the evaluation of a non-physical, ordinal property. With the aim of making the results

produced by di�erent students more meaningfully comparable, a list of exemplary descriptions of courses, each

of them with an associated value of quality, could be made available to students. The list operates in the case

as the public scale, against which the measuring instruments, i.e., the students, are calibrated by learning such

prototypical cases of quality and their associated reference values.

Example 3. Light intensity measurement.

Light intensity can be measured by using photodetectors, which constitute basic components of photometers.

Photodetectors can be characterized by the e�ect on which they are based to detect light. In particular, photodiodes

convert light into electric current exploiting the photoelectric e�ect. In this case, the sensitive and substrate surfaces

of photodiodes form a P-N junction operating as a photoelectric transducer that generates an electric current whose

intensity, for monochromatic light, is proportional to the number of photons per unit area per unit time. Thus,

comparing this current with a reference current allows us to determine the intensity of the light. Let a be some

light radiation.

1. Classi�cation module:

(a) {P ∗
j } is a set of reference current intensities;

(b) {pj} ⊆ R[u] is a set of numerical values in a given unit u;

(c) ρP is de�ned so that the image of {P ∗
j } under ρP is {pj};

(d) {Pm} is the set of intensities of possible currents;

(e) cP is a comparison process of currents by intensity as provided by an ammeter.

2. Measurement module:

(a) Θ is light intensity;

(b) {θi} ⊆ R[W/m2] is the set of numerical values in unit W/m2;

(c) fΘ
P is the photoelectric e�ect process;

(d) ϕPΘ is based on the quantum e�ciency of the photodiode;

(e) ρP and cP are as above.

This example is interesting, as it highlights that the model we have proposed here captures the core process of a

direct measuring instrument within a measurement process.

9 Conclusion

The structural model we have proposed in this paper is the result of taking into account and further developing

in a general and consistent way the main elements that, according to the current literature, characterize a process

of measurement performed according to a direct method, such that a measuring instrument is designed so as to

directly interact, on the basis of a transduction e�ect, with the object under measurement relative to the measurand.

One or more direct measurements are the core component of any measurement process, however complex it is, and

this shows the importance of providing a general characterization of what direct measurement is. The bottom-up,

modular structure adopted in the presentation is an e�ective strategy to handle the complexity of the process: each

module is introduced in terms of the functional task it performs, �rst in the ideal, purely structural case and then

in the real case in which the model becomes dynamic and measurement uncertainty has to be included in it. This

reveals analytically the conditions that the process has to ful�ll to guarantee the trustworthiness of its results. Such
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a model is therefore a good basis for designing measurement processes whose results have an uncertainty not less

than the de�nitional uncertainty, which characterizes the measurand, but not greater than the target uncertainty,

as constrained by the goals of the process and the available resources to perform it.
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