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In recent years, data sets are steadily growing in size because of the huge sensing, storage, 

computation, and transmission capabilities offered at very low cost by current Information 

Technology systems, which are increasingly driving ubiquitous data acquisition from the 

empirical world. Moreover, massive amounts of data can be collected very efficiently – 

sometimes at zero marginal costs – from the internet. The concept of Big Data (BD) 

epitomizes this phenomenon, among the experts and the general public (for an accessible, 

application-oriented introduction to BD in the broad context of data science, see, e.g., [1]).

“Big Data” is in fact a vague, all-encompassing term that broadly refers to any data set, or 

collection of them, so large, usually heterogeneous (e.g., text, audio, images, video) and 

poorly structured that it becomes difficult to effectively obtain information from them by 

using traditional computational methods. The societal relevance of this phenomenon is 

related to the expectation that, in the near future, BD will positively and pervasively affect 

our lives, thus promoting prosperity and social evolution.

A main driver of the BD phenomenon is the importance attributed to the role of data in 

supporting Decision Making (DM). Of course, while a decision can be made independently of

information available on the entity on which the decision is to be made, there is nothing new 

in the idea that DM takes data on such an entity into account, what is called Data-Driven 

Decision Making (D3M). All closed-loop, negative feedback control systems are examples of 

D3M, where data acquired from the field by sensors provides the information for system 

regulation through actuators. In this traditional situation, which here is called weak-D3M, data

is interpreted and processed by a priori established models. In the BD context, a possible 

novelty is the assumption that the huge amount of data can compensate for the lack of pre-

existing interpretive models, up to the point that “data speaks by itself” so that decision 

models can be inductively built from data. In this scenario, called here strong-D3M, BD 

promises to enable new strategies of making effective decisions in the empirical world. In the

most radical vision, the novelty is not only in automatically generated models, but also in the 

fact that the justification of the predictive capabilities of such models entirely lies in data 

itself, a perspective that quite emphatically has been called “the end of theory” [2].
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The distinction between weak-D3M and strong-D3M is not sharp, mainly because for data to 

produce decision models some meta-models are required (such as k-means, hierarchical 

clustering, support vector machines, and neural networks, which are customary techniques in 

data mining and machine learning), and the distinction between models and meta-models is 

not so sharp as a result. In any case, be the BD phenomenon a forthcoming revolution or not, 

weak- or strong-D3M is going to permeate more and more our society, as the concept of 

“world datafication” witnesses [3].

D3M in the Context of Metrology

In D3M, data must somehow refer to the object of the decision, i.e., data must be data-on-

something, for it to be useful. The distinction between data-per-se and data-on-something is 

not new. In his introductory chapter to the Shannon’s seminal book [4], Weaver wrote about 

it in terms of “the technical problem” and “the semantic problem,” respectively. In this view, 

data (i.e., data-per-se) is simply anything that is chosen from a predefined set that includes at 

least two elements, functionally identified as symbols. While some technical problems can be

tackled on the basis of data-per-se, a decision expected to involve something that is not data 

itself must be driven by data somehow referring to the object of the decision, and then 

equipped with a truth value or an indicator of data quality. This is the realm of Weaver’s 

“semantic problems,” where the reference of data to something else is an aspect of that 

complex entity that is meaning. Data-on-something, and therefore data equipped with 

meaning, can be called information (see, e.g., [5]).

Of course, D3M is possible without focusing on the distinction between data and information,

if the provision of meanings to data, and the related constraints on data processing 

procedures, is an implicit task for human beings. For example, in a purely syntactical context 

one might both sum and multiply numerical data to find possible regularities in the outcomes,

whereas sums of data known to refer, e.g., to masses and accelerations should be considered 

with suspicion, if not taken just as wrong. Conversely, in the case of strong-D3M, with the 

perspective of completely computer-based decisions, the explicit distinction between data and

information is essential.

A crucial point is that in D3M the confidence in the outcomes, about the risk of making 

wrong decisions, depends on the quality of the available information. This is sometimes 



presented in terms of the so called Garbage-In-Garbage-Out (GIGO) principle: poor 

information quality can be the main reason of wrong decisions. Guaranteeing a sufficient 

quality of input information is then a critical condition.

For centuries, science and technology have developed and refined a body of knowledge 

aimed at characterizing the quality of information acquired from the empirical world: it is 

metrology, the “science of measurement and its application” [6]. Indeed, measurement is a 

process able to provide information about the quantity intended to be measured, i.e., the 

measurand, by comparing it with a reference (usually a unit). That information is returned in 

the form of quantity values for the measurand, coupled with a specification of the quality of 

such values, sometimes in terms of a single synthesizing parameter called measurement 

uncertainty, as shown in the block diagram of Fig.1 where the paths of both information and its 

quality are depicted as outputs of the measurement process.

Insert Fig. 1 here

We claim that the metrological culture, and in particular the capability to identify and 

quantify the different contributions that limit the information quality, is crucial to assess the 

confidence of BD-based D3M outcomes.

 The actual driver of D3M is information, not just data.

 Effective strong-D3M requires the solution of semantic problems, not only syntactical 

ones.

 The metrological culture is crucial to estimate the confidence of the D3M outcomes.

D3M analyzed in the context of metrology.

Decision Making and Big Data

DM is an information process, not a physical transformation, performed by an entity (the 

decision maker) that has identified at least two alternative options in reference to an entity 

(the object of the decision) and chooses one of them (the decision) as the outcome of the process. 

DM implies the availability of information on the object of the decision – at least on the 

possible options that can be decided but usually also on the current state of the object – and 



therefore, if the information is not already owned by the decision maker, it may require a 

stage of information gathering. This is D3M.

As shown in Fig. 2, DM is guided by a possibly specified procedure in order to achieve a 

given goal. It is subjected to constraints, for example related to the resources that can be 

devoted to the process or to the limits in the time available to decide. In addition, an idea of 

the acceptable level of risk associated with making the decision is needed, being it a lower 

bound for decision confidence: while the acceptable level of risk is a process specification, 

the decision confidence depends on both the DM structure and the quality of the available 

information.

Insert Fig. 2 here

Main Features of Decision Making

The structurally simplest case of DM is such that:

 there exists a single best choice, implied by the well-defined purposes of the decision 

maker and the state of the object of the decision (single aimed process);

 the decision maker is completely guided toward the best choice by well-defined 

procedures to operate on the available information (fully structured process); and

 the information obtained from data suffices to make an unambiguous decision (fully 

informed process).

In this case, DM is not a matter of subjectivity and can be, in principle, completely 

automated. Conformity assessment may be an example of such D3M, being based on (1) 

explicit conditions on the best choice (whether the item under test should be decided being in 

conformity with specifications of nominal values and tolerances); (2) explicit decision rules 

stating when the item is in conformity with specifications, or when the available information is 

not sufficient to discriminate (see, e.g., [7]); and usually (3) appropriate measurement processes 

providing the required information on the item under test.

Up to few years ago, only single aimed, fully structured, and fully informed DM could be 

completely automated. Today, computers not only support human decision makers in 

performing a lot of background work, but they have acquired the power to perform many 



non-single aimed, semi-structured, and partially-informed decisions. Indeed, with the advent 

of BD and the diffusion of the so called “cognitive computing” [8], computers can be 

endowed with the ability to automatically discover robust patterns from a huge number of 

examples, thus inferring information from them.

This scalability in DM can have strong social implications, since it is expected to exhibit 

strategic value for businesses as well as for knowledge development in many data-starved 

areas of inquiry such as health care, and social, ecological, and earth sciences. This is 

probably the reason why combining human knowledge with machine learning appears to be a

very promising approach [9].

Decision Making in the Context of Big Data

Historically, DM in science and technology has been based on single aimed, structured, and 

fully informed processes, where the required information is obtained by processing data 

about properties of empirical objects obtained by means of specifically designed 

measurements, and processing procedures are based on predefined analytical models derived 

from well-established theories. This characterizes weak-D3M.

In the last decades, the effectiveness of the scientific method inspired the application of D3M 

in many fields of human endeavor, with the aim of minimizing the risk of wrong decisions 

and improving the comparability of the outcomes. However, unlike the traditional contexts of

science and technology, when D3M is performed in the context of BD (see, e.g., [10]):

 data is not acquired by well-structured and validated procedures designed for a well-

defined purpose, but its availability is usually just taken for granted; and

 processing models are not based on well established theories on the phenomenon at stake, 

but are derived from intuition or experience, or result from observed regularities in the 

available data.

Thus, both data and model uncertainties are rarely reliably known or evaluable with good 

confidence. This situation may be expected to become more and more common with the 

further increase of world datafication, where the widespread diffusion of both data 

acquisition (from the empirical world), and information gathering (from human beings or pre-

existing data sources) will make huge data sets available, generated not with a specific 



purpose but as generic, possibly open, “data services,” in the perspective that sooner or later 

they might be useful somewhere to something. This is why in the BD context data is often 

assumed as already available, so that designing and implementing suitable acquisition 

procedures might not be needed, or are sometimes even possible. As a result, data quality is 

usually unknown except for some purely syntactical aspects such as missing data and for 

checking general constraints related to data types (a string is wrong where a number is 

expected) and ranges.

Moreover, when dealing with BD, explanatory models for data are often a priori unknown, 

and they must be extracted from data itself by adopting blind analysis methods, such as the 

meta-models of machine learning, which are indeed aimed at identifying patterns in the 

available data with no or very limited prior knowledge on the structure of the data generating 

phenomenon. The robustness of the identified patterns is then particularly important: a 

candidate pattern is expected to occur in the future so that the related information has 

predictive value and consequently is reliably actionable for DM [9].

Hence, it is not surprising that in the context of BD, the risk of wrong data processing, wrong 

data semantization, and then wrong decisions may be significant. Here, metrological 

principles and methods may become critical tools to (at least roughly) estimate how 

uncertainty of information, adopted models and procedures affect the confidence associated 

to the drawn conclusions.

The Metrological Culture in the Big Data Context

While the specific tools of metrology might not be always applicable in the context of BD, 

some lessons can be learned from it to support a methodologically correct implementation of 

strong-D3M, as illustrated in this section.

Measurement and Quality of Information

According to the mentioned GIGO principle, poor information quality can be the main reason

for wrong decisions. Unfortunately, the impressive proliferation of data sources and the 

exponential growth in data volumes that characterize BD can make it hard to assess, and even

harder to assure, the quality of the available information. Hence, it is clear why data quality 

management is of crucial relevance in D3M, and why a significant fraction of the time and budget

available for BD system development is currently employed to tackle quality issues.



The dimensions of information quality include:

1. consistency: the condition that data is within the assumed value domain and is not duplicated;

2. availability: the fraction of time that data is made available by the system that stores 

it;

3. currency and timeliness: the degree to which data is updated and readily available for 

use, respectively;

4. specificity: a condition related to the quantity of syntactical information: stating, e.g., 

that a length is in the interval 10.5 ± 0.1 m is more specific, and therefore of better 

quality, than stating that it is in the interval 10 ±1 m; when referring to measurement 

results, specificity is also called precision; and

5. trueness: a condition related to the faithfulness of semantical information: were, e.g., 

10.55 m the value of a length provided by the best independent method, stating that 

the length is 10.50 m is truer, and therefore of better quality, than stating that it is 10.40

m [6] as synthesized in terms of accuracy in metrology [6], [11]. 

The first four dimensions are related to data-per-se (where the second and the third 

dimensions specifically refer to data management) and are the focus of data quality 

management systems, mainly aimed at the detection and possibly the retrieval of erroneous or

missing data in a scalable and timely manner. The fifth dimension is related to the meaning of

data and, together with the fourth dimension, can be effectively managed using the principles,

methods, and tools of metrology.

In this perspective, metrology can be structurally considered a science of information quality, 

since it enables one to evaluate and express the quality of information obtained by 

experimental means. The knowledge of metrology fundamentals is then helpful to manage 

decision confidence. In particular, metrology suggests that information quality is inversely 

related to the uncertainty attributed to information [12]. Indeed, while measurement can be 

abstractly interpreted as a selection process (a set of possible symbols is given, and the 

process leads to select one or more of them), it is much more [13].

First of all, a model is adopted for the measurand [6] such that the selected symbols are 

interpreted as values of that quantity, thus becoming data-on-something. In defining such a 



model, it may be admitted that the measurand cannot be completely identified and 

characterized, so acknowledging a non-null definitional uncertainty, “the practical minimum 

measurement uncertainty achievable in any measurement of a given measurand” [6].

Second, referring the reported values to the intended quantity is definitely not a trivial 

position, and it is justified by the quality of the measuring system, which is expected to 

generate an output that is stable in the case of repeated interactions with the object under 

measurement, and specifically depends on the measurand and not on other quantities, the so-

called “influence quantities.” The fact that the measuring system has a limited repeatability 

and selectivity with respect to the measurand is acknowledged in terms of a non-null 

instrumental uncertainty.

Third, the interaction between the object under consideration and the adopted measurement 

system can alter the state of the object itself. This phenomenon, acknowledged in terms of a 

non-null interaction uncertainty, may occur when acquiring physical quantities – the so-

called “loading effect” – and it is even more usual for non-physical quantities, as for example

in most cases of interviews (see, e.g., [14]).

Non-null definitional, instrumental, and interaction uncertainties prevent the complete object-

relatedness (objectivity for short) of the information provided by measurement.

Fourth, the reported values imply a comparison with a reference quantity, usually a unit  

realized by a measurement standard, so that any numerical quantity value is intended as the 

result of such a comparison performed according to a well-defined procedure. To ensure that 

the information provided by measurement is then socially available and understandable, 

measurement standards must be disseminated, and measuring systems must be calibrated 

against them. Limited quality of the calibration process prevents the complete subject-

independence (intersubjectivity for short) of the information obtained by measurement.

A fundamental principle of the metrological culture can be then characterized as follows, as 

synthesized in Fig. 3: data becomes useful information when it is related to an object and its 

quality is evaluated in terms of objectivity and intersubjectivity, as customarily synthesized 

by measurement uncertainty  [15], [16].



Insert Fig. 3

 The degree of measurement information objectivity is quantified by means of definitional,

instrumental, and interaction uncertainties.

 The degree of measurement information intersubjectivity is quantified by means of 

instrument calibration uncertainty.

Quantification of the quality of information returned by measurement.

Quantification of the Quality of Measurement Information 

A simplified model that synthesizes the structure of the whole process of D3M, as analyzed in

the metrological context, is schematized by the block diagram in Fig. 4. Starting from the 

bottom of the diagram, three different stages are identified: information generation, 

information processing, and decision making, and the main sources of uncertainty that can 

affect the confidence of the final decision are highlighted. The identification of such 

uncertainty sources and the quantification of their effect on the decision confidence can be 

facilitated by the knowledge of measurement fundamentals. 

Information Generation: As shown in Fig. 4, in the information generation stage, data is 

collected through two types of procedures: measurement (that is objective and intersubjective

information acquisition from the empirical world) and information gathering from existing 

repositories or the internet. Along the two paths, data collection activities and phenomena 

limiting the information quality are very different.

In most data acquisition processes performed in the context of BD, unlike measurements, 

objectivity or intersubjectivity can hardly be assessed. Even when dealing with non-physical 

empirical properties, the identification of uncertainty sources and the evaluation of the related 

uncertainty is facilitated by considering the four different sources discussed above and shown in 

Fig. 3: definitional, instrumental, interaction, and calibration uncertainty sources. These 

uncertainty sources are present in any measurement, i.e., they are physiological, and the 

related uncertainty should be kept within predefined bounds. However, due to uncontrolled 

phenomena, the acquired information might be wrong. These pathological situations are often

related to the first three quality dimensions above: they should be detected and the related 



data should be rejected, or, if they are believed to convey information, they should be 

explained.

Also, data gathered from the information world is, in principle, affected by uncertainty which

is usually unknown. However, when subsidiary information about the procedure employed to 

the gathered data is available, uncertainty can sometimes be evaluated using metrology 

methods and tools. In particular, the uncertainty sources considered above are present also 

when gathering information. For example, instrumental uncertainty might be related to the 

adopted software tools, their correct design and use. Interaction uncertainty can arise when 

the employed software tools may alter the stored data. Moreover, uncertainty affects the 

reliability and degree of coverage of data stored in repositories.

Insert Fig. 4 here

The metrological approach of identifying the various uncertainty sources is useful also to 

analyze the stages of information processing and decision making, as discussed in the 

following. Moreover, once the various uncertainty sources have been identified, the 

uncertainty effect on the confidence of the process outcome can be estimated using the 

methods and tools of metrology [12].

Information Processing: As shown in Fig. 4, in the information processing stage, quality may

be limited by:

 the uncertainty of the adopted inferential or predictive processing model (inferential 

uncertainty). For example, bad model quality can occur because the selected indicators 

provide insignificant or wrong information for the considered DM problem. If enough data is 

available, modeling uncertainty can be evaluated using data itself [17]; and

 the finite amount of information conveyed by the limited amount of available data 

(statistical sampling uncertainty). In the BD context, due to the large amount of data, 

estimates are expected to be accurate proxies of the statistical parameters of the population, 

thus significantly reducing sampling uncertainty.

Also in this stage, the above uncertainty sources are present, and the related uncertainties 

should be kept within predefined bounds. However, it may happen that the inferential model 



is wrong, which reflects in a misuse of the available information (e.g., statistical correlation 

misinterpreted as causation). The usage of blind analysis methods, relying only on data and 

without a priori information about the phenomenon at stake, may significantly increase the 

risk of these pathological situations.

Decision Making: In the DM stage, the confidence in the process outcome can be limited by 

various causes, such as the vagueness of the goal, the ambiguity in the possible decision 

options, an incomplete decision procedure, conflicts in constraints, and reasoning biases. 

These factors reflect on reduced decision confidence even though information unaffected by 

uncertainty is available. Also, the significance of information is critical for ensuring effective 

decision support, referring to the query: “is the provided information useful to support the 

DM process?”.

Among the reasons limiting information significance there are:

 construct significance, related to the query: “are we actually considering what we 

need to consider to effectively support DM?” When dealing with complex problems whose 

determinants need to be described at a high level of abstraction, it may be difficult to 

recognize the significance of the provided information and even more difficult to improve its 

quality. For example, different intelligence tests exist, but the obtained results could not be 

useful to decide about problem solving capabilities of a person; and

 content significance or completeness, referring to the extent to which the provided 

information covers the whole range of relevant aspects needed for an adequate support to 

DM. For example, when deciding whether to hire a metrology technician, information limited

to his/her technical capabilities only could lead to wrong decisions since information about 

his/her process management capabilities and soft skills is also relevant.

Information significance can be improved only through a better understanding of the main 

determinants involved in the decision problem.

Finally, as in the previous stages, pathological DM can occur. For example, the available 

information could be misused due to a wrong decision procedure.



Conclusions

A main driver of the BD phenomenon is the importance attributed to information in 

supporting DM, both when data is interpreted and processed by a priori interpretive models 

(weak-D3M) or when “data speaks by itself,” since blind analysis methods are used (strong-

D3M). In particular, the latter situation is expected to enable new strategies of making 

effective decisions in the empirical world, even though the lack of predefined interpretive 

models of the phenomenon at stake may strongly increase the risk of wrong decisions.

This paper aimed at showing that a sound knowledge of measurement fundamentals can be 

helpful in managing such a risk, since it makes people aware about possible uncertainty 

sources and their effect on the confidence of the conclusions they draw. Specifically, a 

simplified model that synthesizes the structure of a D3M process has been proposed by 

identifying three main process stages: information generation, information processing, and 

decision making. Applying approaches used in the context of metrology, the main 

contributions that may affect the confidence of the final decision have been identified and 

highlighted in a D3M model. We think that the obtained scheme can provide useful guidelines

to estimate the confidence of the D3M outcomes and manage the risk of making wrong 

decisions.

Remark: One of the authors is a member of the Joint Committee for Guides in Metrology 

(JCGM) Working Group 2 (VIM). The opinion expressed in this paper does not necessarily 

represent the view of this Working Group.

References

[1] R. Schutt and C. O’Neil, Doing Data Science. Newton, MA, USA: O’Reilly Media, 

2014.

[2] C. Anderson, “The end of theory: the data deluge makes the scientific method 

obsolete,” Wired, 2008. [Online]. Available: https://www.wired.com/2008/06/pb-theory.

[3] K. N. Cukier and V. Mayer-Schoenberger, “The rise of big data – how it’s changing the

way we think about the world,” 2013. [Online]. Available: 

https://www.foreignaffairs.com/articles/2013-04-03/rise-big-data.

[4] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. 

Champaign, IL, USA: University of Illinois Press, 1949.



[5] L. Floridi, The Philosophy of Information. Oxford, England, UK: Oxford University 

Press, 2011.

[6] JCGM 200:2012, International Vocabulary of Metrology – Basic and general concepts 

and associated terms (VIM) (2008 edition with minor corrections), Joint Committee for 

Guides in Metrology, 2012. [Online]. Available: 

http://www.bipm.org/en/publications/guides/vim.html.

[7] JCGM 106:2012, Evaluation of measurement data – The role of measurement 

uncertainty in conformity assessment, Joint Committee for Guides in Metrology, 2012. 

[Online]. Available: http://www.bipm.org/en/publications/guides/gum.html.

[8] J. O. Gutierrez-Garcia and E. López-Neri, “Cognitive computing: a brief survey and 

open research challenges,” in Proc. 3rd Intern. Conf. Ap. Computing and Inform. Technology

and 2nd Intern. Conf. on Computational Sci. and Intelligence, pp. 328-333, 2015.

[9] V. Dhar, “Data science and prediction,” Comm. ACM, vol. 56, no. 12, pp. 64-73, 2013.

[10] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. Cambridge, MA, USA:

MIT Press, 2001.

[11] ISO 5725-1:1994, Accuracy (trueness and precision) of measurement methods and 

results – Part 1: General principles and definitions, International Organization for 

Standardization, 1994.

[12] JCGM 100:2008, Evaluation of measurement data – guide to the expression of 

uncertainty in measurement (GUM) (1995 edition with minor corrections), Joint Committee 

for Guides in Metrology, 2008. [Online]. Available: 

http://www.bipm.org/en/publications/guides/gum.html. 

[13] D. Petri, L. Mari, and P. Carbone, “A structured methodology for measurement 

development,” IEEE Trans. Instrum. Meas., vol. 64, no. 9, pp. 2367-2379, 2015.

[14] O. Duncan, Notes on Social Measurement – Historical and Critical.  New York, NY, 

USA: Russell Sage Foundation, 1984.

 [15] L. Mari and D. Petri, “Measurement science: constructing bridges between reality and 

knowledge,” IEEE Instrum. Meas. Mag., vol. 17, no. 6, pp. 6-11, 2014.

[16] L. Mari, P. Carbone, and D. Petri, “Measurement fundamentals: a pragmatic view,” 

IEEE Trans. Instrum. Meas., vol. 61, no. 8, pp. 2107-2115, 2012.

[17] M. Gubian and D. Petri, “Uncertainty analysis of learning-from-examples algorithms,” in

Proc. of the IEEE Int. Workshop on Advanced Methods for Uncertainty Estimation in Meas., 

pp. 34-39, 2008.



Luca Mari is a Full Professor of measurement science with the Cattaneo University – LIUC, 

Castellanza, Italy, where he teaches courses on measurement science, statistical data analysis,

and system theory. He is currently the Chairman of the TC1 (Terminology) and the Secretary 

of the TC25 (Quantities and units) of the International Electrotechnical Commission (IEC) 

and an IEC expert in the WG2 (VIM) of the Joint Committee for Guides in Metrology 

(JCGM). He has been the Chairman of the TC7 (Measurement Science) of the International 

Measurement Confederation (IMEKO).

Dario Petri is a Full Professor of measurement and electronic instrumentation and the Head 

of the Department of Industrial Engineering, University of Trento, Italy. He is also an IEEE 

fellow member and has been the VP for Finance of the IEEE Instrumentation and 

Measurement Society since 2013 and the Chair of the IEEE Smart Cities Initiative in Trento 

since 2015. He was the Chair of the Italian Association of Electrical and Electronic 

Measurements (GMEE) from 2013 to 2016 and the chair of the IEEE Italy Section from 2012

to 2014.  He received the M.Sc. degree and the Ph.D. degree in electronics engineering from 

the University of Padua, Padua, Italy in 1986 and 1990, respectively. His research activities 

are focused on data acquisition systems, embedded systems, fundamentals of measurement 

theory, application of digital signal processing to measurement problems.

Fig.1. Conceptual view of measurement as a process that provides information about entities 

of the empirical world.

Fig.2. Black box model of a DM process.

Fig.3. Conceptual view of measurement as a process that provides objective and intersubjective 

information.

Fig.4. Simplified model for D3M analyzed in the context of metrology.
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