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Abstract
The concept ‘sensitivity’ has multiple and sometimes incompatible usages and definitions, as they can be
found in the scientific and technical literature. A strategy is proposed towards a conceptual framework in
which sensitivity is qualitatively intended as a feature of a black box behavior and quantitatively is defined
according to specific evaluation types (interval / ratio, ordinal, nominal) for both deterministic and stochastic
behaviors. The proposed formal definitions characterize stochastic sensitivity as constituted of “effective”
and  “confounding”  components,  that  can  be  simultaneously  present  and  contribute  to  a  desirable  and
unwanted increment of global sensitivity respectively. Two examples taken from the context of  imaging
systems and image-based measuring systems, in which sensitivity is computed in presence of non-negligible
uncertainty sources, provide some hints on the usefulness of the proposed framework.
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1. Introduction
In all non purely formal bodies of knowledge, and thus in experimental sciences and technology in particular,
the  relevant  concepts  are  conveyed  not  only  through  mathematics  but  also  by  means  of  linguistic
expressions,  at  least  with the aim of interpreting mathematical  constructs in terms of empirical  entities.
While maybe unavoidable, such usage of natural language is not exempt from problems, as it may lead to
both synonyms (different terms designating the same concept) and polysemies (different concepts designated
by the same term) [2]. Synonyms generate redundancy but their potentially negative effects can be easily
prevented, for example by means of a thesaurus. On the other hand, polysemies are sources of ambiguities,
whose presence reduces the chance or increases the cost of correct communication.
Of course, such issues are mainly due to traditions and consolidated usages of linguistic expressions and their
relations to concepts, not to concepts as such. It is not amazing then that measurement, a process exploited in
so many fields and since so long time, is particularly affected by an ambiguous lexicon. The  plethora of
specific measurement-related sublanguages hinders the inter-disciplinary communication and emphasizes an
artificial separation between science(s) and society. Hence, contributing to bridge these gaps seems to be a
promising, worthwhile effort.
It is the goal explicitly pursued by the Joint Committee for Guides in Metrology (JCGM) in the development
of the International vocabulary of metrology – Basic and general concepts and associated terms (VIM) [3].
Building on the traditional ground of measurement of physical quantities, which was the basic scope of its
first two editions, the current, third edition of the VIM explicitly aims at a broader reach, being “meant to be
a common reference for scientists and engineers – including physicists, chemists, medical scientists – as well
as for both teachers and practitioners involved in planning or performing measurements, irrespective of the
level of measurement uncertainty and irrespective of the field of application. It is also meant to be a
reference for governmental and inter-governmental bodies, trade associations, accreditation bodies,
regulators, and professional societies.” [3, Scope].
The VIM is then an important step towards a widespread, universally agreed concept system and lexicon for
measurement science. On the other hand,  the many existing sublanguages about  measurement make the
endeavor  a  complex  and delicate  one:  whenever  multiple  concepts  for  the  same term are  found in the
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scientific  and  technical  literature,  a  comparative  study  should  be  done  to  identify  an  appropriate,
encompassing definition, or at least to emphasize the reasons and the nature of such multiplicity, including
the possible differences in scope. An explicit strategy to produce consistent definitions / presentation should
be adopted, particularly in the case the same concept is both qualitatively and quantitatively characterized
and the two layers have to be properly coordinated.1

This  paper  is  aimed  at  proposing  a  possible  example  of  such  a  strategy  in  reference  to  the  concept
‘sensitivity’, a case that at the same time is particularly difficult for its many, sometimes markedly different,
characterizations and is relevant in many scientific and technical fields: the lessons learned might be then
replicable to other measurement-related concepts. Hence this is in line with the attempt of the third edition of
the VIM to widen the scientific and technical community to which the vocabulary is devoted.

2. Framing the concept ‘sensitivity’
The concept ‘sensitivity’ is defined in so many contexts and with so many specifications that one might
doubt that such a polysemy can ever be solved. A first problem is: sensitivity of what? Indeed, by means of a
feature termed “sensitivity” different entities are characterized: measuring instruments and systems but also,
e.g., methods, tests, and algorithms.2

Let us then adopt a black box (meta-)modeling strategy, by hypothesizing that sensitivity is a feature of an
entity X under the only conditions that X is not static, i.e., it can produce different outputs Y(t) depending on
its input U(t), and possibly a random contribution N(t). The black box assumption implies that the analytical
form  of  the  input-output  relation,  generically  denoted  with  f in  the  following,  might  not  be  known.3

Furthermore, no constraints are given on the ranges and types of U and Y and on time domain, allowed to be
either continuous or discrete.
On this basis some significant examples of the definition of ‘sensitivity’ follow, preliminarily classified in
two general categories – let us denote them as  and  – in terms of this input-output characterization.

. Sensitivity as y/u, where uU and y = f(u)Y, possibly under specified conditions.
1. Sensitivity of a measuring system: “the quotient of the change in an indication of a measuring system

and the corresponding change in a value of a quantity being measured”; VIM, 4.12 [3];
2. Photocathode sensitivity: “ratio of the photoelectric emission current from the photocathode to the

incident  luminous  flux  under  specified  conditions  of  illumination”;  IEV,  394-38-11,  Nuclear
instrumentation  –  Instruments,  systems,  equipment  and  detectors  /  Characteristics  of  radiation
detectors (all IEV definitions are taken from [5]);

3. Sensitivity  of  a  measuring  assembly:  “for  a  given  value  of  the  measured  quantity,  ratio  of  the
variation of the observed variable to the corresponding variation of the measured quantity”; IEV:
394-39-07,  Nuclear  instrumentation  –  Instruments,  systems,  equipment  and  detectors  /
Characteristics of radiation measuring assemblies;

1 The VIM3 offers some interesting examples of the qualitative vs quantitative distinction: “Measurement precision is 
usually expressed numerically by measures of imprecision...” [3, 2.15 N1]; “Measurement trueness is not a quantity and
thus cannot be expressed numerically, but measures for closeness of agreement are given...” [3, 2.14 N1]; “The concept 
’measurement accuracy’ is not a quantity and is not given a numerical quantity value.” [3, 2.13 N1]. It is the situation of
three concepts with a qualitative definition and three different treatments as for their quantitative counterparts, without 
stated reasons justifying this difference.
2 In this paper the distinction between terms referring to objects, or concepts, or terms is critical. Hence we adopt the 
notational convention from ISO standards, e.g., [4]. A term, and more generally a linguistic expression, referring to:

– itself, i.e., a term, is delimited by double quotes;
– a concept, i.e., its meaning, is delimited by single quotes;
– an object, i.e., its referent, is not delimited.
Hence, (the concept) ‘sensitivity’ is expressed in English by (the term) “sensitivity” and is about (the object) 

sensitivity. The lack of delimiters around terms for objects (i.e., entities of the world) follows an economic principle: in 
everyday writing, we usually intend to refer to objects, and not to concepts or terms.
3 We will adopt the notational convention of denoting properties, typically modeled as random variables, by upper case 
characters and their values / occurrences by lower case characters. In general X is a multiple-input and multiple-output 
(MIMO) system, so that its input and output are vector properties. For the sake of simplicity, in the following we will 
assume that U and Y are scalars, then single components of these vectors.



4. Dynamic  sensitivity:  “under  stated  conditions  of  operation,  the  quotient  of  the  variation  of  the
photoelectric current of the device by the initiating small variation of the incident radiant power or
luminous  flux”;  IEV,  531-44-25,  Electronic  tubes  /  General  properties  and  quantities  of
photosensitive tubes;

5. Analytical sensitivity of a method: “the slope of the calibration curve and the ability of an analytical
procedure to produce a change in the signal for a defined change of the quantity”; CLSI, Project
ILA20 [6];

6. Sensitivity  analysis:  “a  what-if  type of  analysis  to  determine  the sensitivity  of  the  outcomes to
changes in parameters; if a small change in a parameter results in relatively large changes in the
outcomes, the outcomes are said to be sensitive to that parameter”; OECD Statistics glossary [7].

Some comments on these definitions. 2 is the example of a specific version of 1. 3 emphasizes that the
sensitivity may depend on the input value u, i.e., from u1 u2 it generally follows that f(u1)/u1  f(u2)/u2.
4 emphasizes that the sensitivity may be time-variant (i.e., generally  f(U(t1))/U(t1)   f(U(t2))/U(t2)),
thus possibly distinguishing between transient and steady-state sensitivity. In synthesis, sensitivity of  X is
then generally sensitivity of X with respect to U and Y, and relatively to given u and t. 5 points out that for
measuring instruments the relation between U and Y is formalized by the calibration function, so that in this
case the sensitivity is the first derivative of such function. Finally 6 shows that  X is not required to be a
physical  device:  it  can  be  a  formal  procedure,  e.g.,  an  algorithm.4 Note  that  these  definitions  are
dimensionally coherent: dim(sensitivity) = dim(Y) / dim(U).

. Sensitivity as a given function g(u) of uU, such that y = f(u)Y, satisfies a given condition.
 Intrinsic sensitivity: “the minimum level of signal at the input of a radio receiver, which produces an

output signal of specified quality, when the gain is sufficient and assuming no external noise”; IEV,
713-10-55, Radiocommunications: transmitters, receivers, networks and operation / Radio reception
and receivers;

 Sensitivity: “the input luminous flux necessary to obtain a stated signal-to-noise ratio in the output”;
IEV, 531-45-13, Electronic tubes / Camera tubes;

 Knee sensitivity: “the luminous flux at the knee point of the light-signal transfer characteristic”; IEV,
531-45-10, Electronic tubes / Camera tubes;

 Electrical  sensitivity:  “reciprocal  of  the  threshold  for  electrical  stimulation”;  IEV,  891-02-35,
Electrobiology / Electrophysiology;

 Diagnostic sensitivity: “the proportion of patients with a well-defined clinical disorder (or condition
of interest) whose test values are positive or exceed a defined decision limit (i.e., a positive result
and identification of the patients who have a disease)”; CLSI, Project MM07 [6].

Some comments on these definitions.  1 and  2 are examples where the sensitivity is min(u) such that
f(u)y’, where y’ is a given threshold. 3 defines the sensitivity as u such that f(u) = y’, where y’ is a given
value. 4 defines the sensitivity as u–1 where min(u) such that f(u)y’, where y’ is a given value. 5 is a more
complex case, and can be interpreted as follows. Let {ui} be a finite set of entities having a given property
(e.g., a clinical disorder), being u the cardinality of the set, u = #{ui}. For each ui, let yi = f(ui) be the outcome
of a test X applied to ui and such that yi = 1 if and only if yiy’, where y’ is a given threshold, where u = #{yi:
yi = 1}. Sensitivity is then defined here as y/u. Note that, from the dimensional viewpoint, dim(sensitivity1-3)
= dim(U); dim(sensitivity4) = dim(U)–1; dim(sensitivity5) = 1.

As  a  first  synthesis,  it  appears  that  there  is  a  coherent  conceptual  network  around  sensitivity,  whose
elements can be characterized as different specializations and operationalizations of a basic definition such as
“the derivative Yj / Xi of an output Yj versus an input Ui can be thought of as a mathematical definition of

4 The possibility to consider sensitivity of both empirical and formal entities X arises an interesting issue: if X is 
empirical, its sensitivity cannot be evaluated on the involved properties U and Y, but on a model of them, and therefore 
in reference to their values.



the sensitivity of Yj versus Ui” [8] (for consistency symbols have been changed from the original text). At the
same  time several  other  definitions  can  be  found,  gathered  above  under  the  term “sensitivity”  but  so
mutually inconsistent that they do not even share the same input-output characterization. The fact is also
remarkable that all  definitions assume that sensitivity can be quantified in black box conditions, i.e., even
with no knowledge of the internals of X, whereas less clear is whether this can be done also in the case of 
definitions. Furthermore, while all  definitions are given in purely differential terms, i.e., an experiment to
quantify sensitivity in principle only requires the ability to generate variations in the input of  X, at least
some of the definitions of sensitivity, and  5 in particular, imply the knowledge of specific input values
(“patients having a well-defined clinical disorder”). Finally, all quoted definitions but 5 implicitly assume a
deterministic modeling of X behavior, that is instead statistic in 5.
On the basis of these considerations our strategy has been designed: in the following we will  propose a
conceptual framework in which sensitivity, generally intended as sensitivity, is at first defined qualitatively
and then the definition is specified quantitatively in reference to given scale types. This will allow us then to
propose a generalization to the case where uncertainty cannot be neglected.

3. A formal concept of sensitivity
A conceptual  framework in which ‘sensitivity’ is  given both a general  definition and some type-related
specific  quantitative  definitions  provides  users  with two levels  of  access  to  information and reading of
documentation:
– the general definition offers a wide accessibility to heterogeneous scientific groups and easy interpretation
of the concept;
–  the  specific  definitions  are  oriented  to  focused  targets  and  can  be  customized  according  to  specific
theoretical assumptions or application needs.
The hypotheses we propose to ground this framework are as follows.

Hypothesis 1 – Sensitivity is a property of an entity X modeled as a black box and under the only condition
that the output Y(t2) of X at the time t2 causally depends on its input U(t1), t1  t2.

X could be a measuring system but also a test, an algorithm, ... As the quoted VIM definition (1) shows,
Hypothesis 1 is immediately applicable to measuring systems, by just assuming that Y = indication, and U =
quantity being measured. This hypothesis admits that the analytical form of the input-output relation, i.e., the
entity behavior, is not known, and does not impose any constraints on the types of the properties U and Y.

Hypothesis 2 – The sensitivity of X is a feature related to the ability of the entity X to detect variations of its
input U.

These hypotheses  lead  to  the  following definitions,  that  have been  first  proposed  in  [1]  and provide a
conceptual baseline for the rest of the paper.

General (“qualitative”) definition – Sensitivity is a property of an entity, possibly modeled as a black box,
and characterizes the ability of the entity to produce a variation of its output in response to a variation of the
received input.

This definition, that does not explicitly provide a way to assign a value to the sensitivity of a given entity X,
is based on a generic concept of variation, that has to be specified in reference to specific evaluation types
[9],  thus  leading  to  multiple  quantitative  concepts.  Despite  this  generality,  the  process  of  sensitivity
assessment that is assumed here has a definite operational structure: two distinct inputs must be applied to X,
so  to  produce  a  variation  of  the  received  input,  and  the  corresponding  outputs  must  be  recorded  and
compared.
In the following u and y denote input and output property values respectively, where the time dependence of
the properties U and Y is omitted for simplicity. By firstly assuming that all uncertainties are negligible, the
previous, qualitative definition can be specified in quantitative terms as follows.



General (“quantitative”) definition – Sensitivity at the input value u is:

      
 u'u,var

uy,uyvar
=uS (1)

where var is a generic function of variation and u' is an input property value that minimizes var(u, u') under
the condition that var(u, u') > 0.

The concept of variation, as formalized by the function var, has then a crucial role for this definition of
sensitivity. In the case of interval or ratio evaluations, variation is intrinsically part of the scale, and therefore
it can be exploited as is, corresponding numerically to the difference of distinct values vi in the scale:

var(vi, vj) = |vi – vj|
Not so univocal is the concept for ordinal quantities, where the only information meaningfully available on
the quantities is ranking and therefore their algebraic difference is not invariant for scale transformation. On
the other hand, variations in a totally ordered scale can be simply evaluated, e.g., by counting the number of
values in the scale within the values corresponding to the quantities under consideration. If it is supposed that
the scale index i runs monotonically with the scale order, so that the scale values are v1 < v2 < v3 <..., then
trivially:

var(vi, vj) = |i – j|
where also in this case var(vi,  vj) is a metric, and the minimum non-null variation is obtained in the case
var(vi, vi+1) = 1.
When properties are evaluated in a nominal scale even order cannot be exploited: two properties are either in
the same class or in distinct classes, and therefore they are either associated to the same value or to distinct
values, but neither distance nor order are invariant among such values. This suggests a concept of variation
such as:

var(vi, vj) = 1 – δi,j

where the function:
δi,j = 1 if i = j and = 0 otherwise

is the  Kronecker delta.  It  can be easily shown that  also in this case var(vi,  vj)  is  a metric,  and that  the
minimum (actually: the only) non-null variation is when var(vi, vj) = 1.
Hence, for each property evaluation type at least one variation function var(vi, vj) is available that is applied
to property values and represents information on the empirical variation of the corresponding properties. The
fact that, independently of the type, var(vi, vj) is a metric, i.e., a function ranging in R+, allows us to exploit it
to define a concept of sensitivity which is at the same time qualitatively encompassing and quantitatively
specifiable to each type. Furthermore, it is  implied here that the input to  X is not constant, so that for a
generic u the element u' such that var(u, u') > 0 generally exists. On the other hand, at least in the weakest
case of nominal evaluation the uniqueness of u' is not guaranteed.
From these general definitions some type-aware specific definitions of sensitivity can be proposed [1] as
follows.

Specific definition 1 – Sensitivity at the input value u for an interval or ratio evaluation is:

   
Δu

uΔy
=uS (2)

Of course, this is the customary definition of sensitivity (see in particular 1) mentioned above.

Specific definition 2 – Sensitivity at the input value ui for an ordinal evaluation is:

      
   10

1 kk=
u,uvar

uy,uyvar
=uS

1+ii

+ii
i  (3)

where k0 e k1 are the indexes of y(ui) and y(ui+1) respectively in the order specified by the evaluation (note that
by construction var(ui, ui+1) = 1).

Specific definition 3 – Sensitivity at the input value ui and in reference to the input value uj,  ui ≠ uj, for a
nominal evaluation is:



      
  1k

ji

ji
iju k,δ=

u,uvar

uy,uyvar
=uS

0
1 (4)

where k0 e k1 are the indexes of y(ui) and y(uj) respectively in the classification specified by the evaluation,

and 1k k,δ
0  is the Kronecker delta. Due to the lack of algebraic structure on the sets of values for a nominal

evaluation, sensitivity in this definition is in fact a bi-argumental function: as mentioned above, for any given
ui the value uj such that var(ui, uj) > 0 is minimum is not unique, and therefore must be explicitly specified.

Despite the differences in the implied algebraic structure, these three specific definitions assume exactly the
same procedure to evaluation of sensitivity:
– two distinct inputs u and u' such that their variation is (positive but) minimum are independently applied to
X;
– the corresponding outputs y(u) and y(u') are registered;
– the sensitivity of X at u is evaluated by the ratio: variation of outputs / variation of inputs.
Sensitivity assessment is then the example of an operative activity of metrological characterization of  X,5

together with, e.g., the assessment of its resolution, selectivity with respect to specific influence properties,
and  repeatability.  Such  activities  are  typically  performed  by  system  manufacturers,  with  the  aim  of
specifying the technical data sheet of  X,  and therefore in reference conditions such as those available in
laboratory. Hence, the hypothesis of assuming deterministic inputs seems to be acceptable.  On the other
hand, even laboratory conditions cannot guarantee that the behavior of X is deterministic: the next Section is
devoted to exploring the possibility to give a generalized, quantitative definition of sensitivity, applicable for
example in the case of non-negligible instrumental uncertainty [3].

4. Towards a concept of sensitivity for entities with non-deterministic behavior
If the behavior of X is not deterministic, its output is uncertain. Still maintaining the black box hypothesis,
and then in particular independently of the analysis of the possible sources of uncertainty, the behavior of X
can be then modeled in terms of “the distribution of values that could reasonably be attributed” to the output
property Y [10], so that in this case assessing the sensitivity of X requires estimating the probabilities of the
outputs.
Let us then suppose that the output Y of X depends not only on the input U but also on a random process N,
assumed to formalize the non-deterministic behavior of X, and in particular its instrumental uncertainty, all
other sources of uncertainty being considered negligible (i.e., definitional uncertainty) or included in N (i.e.,
reading uncertainty). Moreover, let us suppose that an explicit model of  N is not available, so that a black
box model  is  maintained,  in  which  an  uncertainty  analysis  cannot  be  analytically  performed.  The  new
procedure is then analogous to the previous one:  X is fed with two distinct input values  u1 and  u2 and the
corresponding output values y1 and y2 are registered. The process is assumed now to be repeatable, given the
same values u1 and u2 (without the assumption of repeatability, in principle X could be admitted changing its
sensitivity  between  process  instances;  without  the  assumption  of  input  constancy,  sensitivity  would  be
evaluated at different values). For each j-th instance of the n performed repetitions the output values y1j and
y2j are registered, thus obtaining two samples y11, ...,  y1n and y21, ...,  y2n, that can be formally intended as
outcomes of two output random processes Y1 and Y2 [11]. The target is to estimate the stochastic variation in
output of  X under the repeatability conditions. Two alternative strategies for defining ‘sensitivity’ in this
generalized context can be followed:

1. sensitivity  as  a  generalized  ratio  of  variations  of  random  variables  (the  denominator  has  been
assumed to be a deterministic variation, but it could be more generally a random variation in case of
not negligible uncertainty on the input property), so that sensitivity would be itself a random variable
and its quantitative analysis would involve moments estimation;

2. sensitivity as the ratio of the root second non-central moment of the variable Y2 – Y1 divided by the
deterministic variation u2 – u1, so that sensitivity remains a scalar entity as in the deterministic case.

5 Of course, eq. (2) is easily extended to the continuous case, as     duudy=uS / , that however can be operatively 
assessed only if the black box hypothesis is removed and the function y(u) is supposed to be analytically known.



In this paper, we develop the second strategy, thus considering sensitivity as a scalar quantity and not a
random variable. This choice is in continuity with the deterministic representation, which might increase the
acceptability of the generalization, and is consistent with the black-box assumption on both the entity X and
the random process N. Indeed, the alternative strategy of considering sensitivity as a random variable would
require the acquisition of additional knowledge about the entity even in cases in which it is modeled by a
general computational, explicit or not, procedure (e.g, iterative, differential equation, etc).6

According to the second strategy, and in line with the type-aware characterization presented above in the
deterministic case, the following definitions are proposed.

Stochastic  specific  definition  1  –  Stochastic  sensitivity  at  the  input  value  u for  an  interval  or  ratio
evaluation with an instrumental uncertainty represented by a random process N is:

    
Δu

YYE
=uS

2
12  (5)

where   2
12 YYE   is the expected value of the random process  2

12 YY  , being Yi the output random

process obtained by the repeated deterministic application of input ui, affected by the random process N (the
square is needed to take into account the statistical correlation among output variables and the individual
variation).

Some considerations on this definition.
First, it is well known that:

    2
21

2
12 YY

12Y μμ+2
Yσ=YYE  (6)

where 2
12 YσY   is the variance of the random process  12 YY   and 1Yμ  and 2Yμ  are the expected values

of variables Y1 and Y2 respectively. Hence sensitivity is here the superposition of two components, the square
difference of the expected values of output processes Y1 and Y2 and the variance of the process 12 YY  , thus
highlighting the twofold nature of sensitivity in the non-deterministic case: an “effective” sensitivity, given
by the first term in eq. (6), such that when the difference of the expected values of the two output random
processes increases a higher capability to discriminate outputs is expected; and a “confounding” sensitivity,
given by the second term in eq. (6), such that an increased variance produces larger variations on average,
that however cannot be related to an increased amount of differential information. A high sensitivity of this
second kind can be the symptom of low repeatability, hence not necessarily an optimal working condition.

Second, the equality 
2112

2
Y2cov2σ+2σ=Yσ

Y2Y1YY
  shows that when uncertainty decreases, i.e., variables Y1

and  Y2 tend to  their  expected  value,  then      2Y1Y Y,Yvar=μμ=YYE 12

2
12   in  analogy with the

deterministic case in eq. (2). Moreover, if Y1 and Y2 are uncorrelated the numerator in eq. (5) can be rewritten

as       2
21

2

21

2
12 YYYY σσ+μμ=YYE  , underlying the fact that stochastic sensitivity is zero when

the expected values of the two output random processes and their standard deviations are simultaneously
equal. 
Finally, it should be noted that the proposed definition requires the estimation of the first and second moment
of the random process  12 YY  . An operative definition can be obtained by estimation, under ergodicity

assumption, by considering the two samples y11, ..., y1n and y21, ..., y2n, and estimating  uS  by:

6 The first strategy, that considers sensitivity as a random variable, has some possible advantages. First of all, in the 
case uncertainty contributions are extended to the inputs, the ratio of generalized variations is a random variable: 
assuming sensitivity as a function of random variable, and therefore a random variable itself, can offer a solution for a 
more general discussion. Secondly, when defining sensitivity as a random variable its expected value assumes the more 
immediate meaning of an expected output variation, while its variance can be seen as the quantification of the amount 
of uncertainty that propagates on the sensitivity of the entity. We plan to develop the first strategy in future works, 
possibly based on a less general framework with restricted assumptions (in particular, requiring calibration), then 
allowing propagation rules for the sensitivity analysis.



 
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yy
n
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n
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ii 

1

2
21

1

ˆ
(7)

Stochastic specific definition 2 – Stochastic sensitivity at the input value ui for an ordinal evaluation with
an instrumental uncertainty represented by a random process N is:

       
          2

10
2

1

2
1 KKE=uYuYE=

u,uvar

uYuYE
=uS +ii

1+ii

+ii
i 


(8)

where  K0 and  K1 are  discrete  ordinal  random  processes  representing  the  indexes  of  Y(ui)  and  Y(ui+1)
respectively.

Ordinal quantities are not invariant under standard algebraic operations, required to compute an operative
estimation of sensitivity. To solve this problem the expected value for ordinal quantity can be reformulated,
by simply substituting the empirical mean with the median, and the empirical standard deviation with the
square median absolute deviation (MAD), so that:

        21212
21ˆ

jjjji ymedianymedian+YYMAD.4826=uS 

where:
       jjjlll yymedianyymedianYYMAD 121212 

and where y1j and y2j, j = 1,…, n, are the samples obtained by repeated application of input values ui and ui+1.7

It can be noted that by setting n = 1 in the previous estimation we get:

          01112
ˆ kk=uYuY=yy=uS i+ii 

in analogy to the deterministic case in eq. (3).

Stochastic specific definition 3 – Stochastic sensitivity at the input value ui, and in reference to the input
value uj, ui ≠ uj, for a nominal evaluation with an instrumental uncertainty represented by a random process
N is:

 
     

 ji

ji
iju u,uvar

uYuYE
=uS

2
(9)

being   1=u,uvar ji  for i ≠ j, and where Y may only assume values in {0, 1} and therefore is a Bernoulli
discrete random process.

The probability density function of process Y is given by:
      11 =q+p,Yδp+Yδq=YfY 

being p and q the probabilities of the two values, 0 and 1. If it is assumed, in absence of further information,
that p = q = 0.5, then:

      150  Yδ+Yδ.=YfY

that corresponds to a pair of impulses.
Under the assumption that Y(ui) and Y(uj) are independent, it can be proved that the process:

    22
jiij uYuY=D 

is still a Bernoulli random process with values in {0,1}, such that sensitivity is the root expected value of
2
ijD .

The operative estimation of sensitivity is given by:

7 The value 1.4826 originates from the reciprocal of the standardized normal inverse cumulative distribution function 
evaluated at 3/4. The demonstration of the formula is beyond the object of the present paper. For further mathematical 
details see [12].
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where δ  is the Kronecker delta. Sensitivity is computed as the square root of one minus the average number

of pairs  kjki y,y  such that  kjki y=y , and therefore is directly related to the cardinality of the differences
that are not recognized.
Finally, by setting n = 1 in the previous estimation we get:

     jijiiju yyδ=yyδ=uS  11ˆ

since the term in the square root can only assume values in {0,1}. This is in analogy to the deterministic case
in eq. (4).

5. Numerical examples
The proposed definitions extend the concept of sensitivity to the non-deterministic case and are specialized
to the different (interval or ratio, ordinal, and nominal) evaluation types. To show their usefulness in this
Section we present two numerical examples taken from the context of imaging systems and image-based
measuring systems, in which sensitivity is computed in presence of non-negligible uncertainty sources.

5.1. Sensitivity in X-ray imaging system
A typical imaging system is constituted of an image formation system, a detector, and a recorder [13]. For
example, an imaging medical device such as an analog mammographic unit, consists of a mammography X-
ray equipment, a device to impress a photographic film, and a specific high performing scanner to digitize
the film and produce a  high resolution digital  mammographic  image (usually  12-16 bit  per  pixel).  The
scanner is the critical device in this kind of applications, since it introduces an unwanted amount of noise and
degradation effects especially in very dark regions of the scanned image. A general mathematical model for
such a system is [13]:

      yx,η+yx,wg=yx,v (11)

      yx,ηyx,wf=yx,η 1 (12)

where  yx,w  is the input gray level intensity,  yx,v  is the output gray level intensity,  g  is a nonlinear
function that represents the input-output response of the scanner,  f  contributes to the signal-dependent

noise standard deviation, and   yx,η1  commonly represents white noise. Consider an M2100 ImageClear
DBA scanner used for digitizing X-ray mammographic images. From its datasheet, the output response is
modeled as:

 
γ

d+yx,w

10=g

0

with .92977=γ 0  and .16966=d 50 .
Assuming a negligible noise term and by evaluating the derivative of the output response, we get:

   
 

γ

d+yx,w

1010ln
γ

=wS

0


1

0
(13)

However, due to the presence of uncertainty sources related to noise, the previous procedure is not correct
and robust. Noise is characterized in the datasheet as reported in Fig. 1.
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Figure 1. (left) Input-output characteristic curve. The red bars represent the 3 confidence intervals.
(right) The red curve represents the noise model of the relation between the output values and the noise standard

deviation, estimated by a nonlinear least square approach.

In particular, Fig. 1 (left) illustrates the calibration curve of the scanner and Fig. 1 (right) illustrates the noise
model represented by the relation between the output response v and the corresponding standard deviation
measured in different uniform regions of a calibration wedge. According to this, and considering the previous
definition of  stochastic  sensitivity  for  ratio  or  interval  properties,  an experiment  based on Monte Carlo
simulation can be developed as follows. At each of the  410=n  runs a value for the two output random
variables v1 and v2 is generated, by repeatedly feeding the device with two distinct input gray levels w1 and
w2 and generating the random terms accordingly (i.e., using the noise model described above). Due to the
signal dependence of the noise model, the analysis has to be performed for different pairs of values in the
whole input range. Given that, in logarithmic scanners, the input variable is in a nominal range of [0, 4], for
each w0 in this range, we derive the pair w1 and w2 as w1 = w0 – Dw, w2 = w0 + Dw, with Dw = 0.01 and w1, w2

in the range [Dw, 4 –  Dw]. In order to highlight the relevance of the proposed solution for different noise
levels, let us vary the amount of noise by multiplying by a factor c in [1, 3] the noise standard deviation. For
each c value, we compare stochastic sensitivity  wŜ  with nominal sensitivity  wS0  given by eq. (11), by
computing the relative root mean square error (RRMSE) of the two characteristics as follows:

        
  









 
2

0

0
ˆ1ˆ

wS

wSwS

n
=wS,wSRRMSE

c

0
c (14)

where w = w0 means that the sum is evaluated for each pair w1, w2 around all the considered values w0, and c
indicates the dependence of stochastic sensitivity from the amount of noise. Fig. 2 illustrates the obtained
RRMSE (figure top right) along with some examples of comparison (figures top-left and bottom left/right) of
the obtained stochastic sensitivity (black marked curves) and the nominal sensitivity (green curves). Note
that when c (and hence noise) increases there is a considerable discrepancy among the two characteristics,
especially for high input values. This is due to the fact that for high input values nominal sensitivity goes to
zero. So, from the discussion of the previous Section, we have a small “effective” term and a more relevant
“confounding” term related to the noise variance captured by stochastic sensitivity. A further consideration is
needed in this case. Due to the input-output inverse relation manifested in films recording and due to X-ray
absorption phenomena, brighter regions in the original film image (i.e., fat tissue or film itself) are mapped
into dark regions and vice versa for dark regions (i.e., dense tissue) mapped into brighter areas of the final
image. Consequently, such scanners have a sensitivity that is smaller for regions that are not important for
diagnostic using X-rays. Analogously, it is expected that noise has higher degradation effects in the same
non-medically interesting regions.
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5.2. Sensitivity in computerized diagnosis of breast calcifications
According to the BI-RADs lexicon [14], microcalcifications (MC) are small deposits of calcium (0.1-1 mm):
they are usually the result of a genetic mutations somewhere in the breast tissue, but can also be due to other
conditions. The size, distribution, form, and density of MCs are thought to give clues as to the potentially
malignant nature of their origin. Due to the spatial resolution, mammography, screened by expert radiologist,
is  the  unique  imaging  modality  to  find  MCs.  Previous  works  provided  demonstration  that  malignant
microcalcifications  group  in  clusters  and  are  more  numerous  and  smaller  than  benign  calcifications.
Nowadays, computerized diagnostic systems are used in the clinical practice as second reader to improve the
radiologist interpretation of the mammograms.
Based  on  previous  data  collected  on  mammographic  images  taken  from  the  largest  public  dataset  of
mammographic  images,  the  Digital  Database  for  Screening  Mammography  [15],  we  provide  here  an
estimation of sensitivity of an automatic diagnosis system for calcifications. We collected 122 regions of
interest  (ROIs)  containing  malignant  microcalcifications  and  115  ROIs  with  benign  calcifications.  Two
examples of ROIs are illustrated in Fig. 3 (a)-(c) for malignant and (d)-(f) for benign. In particular Fig. 3 (a),
(d) illustrate the original ROIs with malignant and benign calcifications, respectively, Fig. 3 (b),(e) represent
the  automatically  enhanced  calcifications,  and  Fig.  3  (c),(f)  show  the  automatically  identified  (i.e.,
segmented) calcifications. Therefore, the entity X is here a complex algorithm able to autonomously enhance
and segment the calcifications in a cropped region of the mammogram [16], compute the number of disjoint
bright areas, and provide a category for the cluster, i.e., malignant vs. benign.



Figure 3. (a)-(c) malignant cluster, (d)-(f) benign cluster. (a),(d) Original region of interest, (b),(e) enhanced region of
interest, (c),(f) identified clusters. 

Starting from the images in Fig. 3 (c),(f), binary operators are applied to estimate the number of disjoint
regions (NMC) that appears in the binary image. As an example, in the two cases shown in Fig. 3 the values
assumed by the variable NMC  are equal to 62 and 19, respectively. When computed on the entire set of 237
ROIs the values of the variable NMC range in [1, 241], with a mean value of 38 on the malignant cases and of
8  on  benign  cases.  By  estimating  a  logistic  regression  model  and  then  applying  thresholding,  the
computerized diagnosis system is modeled by the function:

where 0,  , and th are parameters to be estimated. An output value equal to 1 means that the cluster has
been assigned to the category malignant while a value of 0 means that the cluster has been assigned to the
category  benign.  Experiments  run  on  the  237  ROIs  provided  the  following  estimated  values  for  the
parameters along with their standard deviations: average value for 0 equal to –4.73, standard deviation equal
to 0.64, average value for  equal to 0.38, standard deviation equal to 0.05. The value of threshold th has
been fixed to 0.46 using Receiving Operating Characteristic (ROC) analysis. The uncertainty source that has
been considered as the most relevant is that related to the selection of model parameters. Hence, in order to
compute the stochastic sensitivity of such diagnostic system corresponding to a one-variation in the input
variable NMC, we refer to eq. (10).
Let us assume that coefficients 0  and 1 are affected by independent additive Gaussian uncertainty sources
with zero mean and standard deviation provided by the experiments. So, for each pair NMCi, NMCi+1,  NMCi+1  –
NMCi=1,  being  NMC a  counting  variable,  and  considering  the  two  random  processes  0  =  –4.73  +
and  = 0.38 +  we ran repeated experiments collecting the corresponding pair yi =
y(NMCi), yj = y(NMCi+1) = y(NMCi+1). Inserting the output values in eq. (10) and repeating for all the values of

NMCi in the range [1, 241–1] we obtain the estimate  MCi+MCiN NS
1

ˆ  reported in Fig. 4. Red and blue markers

identify the actual category corresponding to each input value as reported in the histological report.
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Results indicate that sensitivity to one-variation in NMC is negligible for input values below 5 and greater than
24. On the contrary, sensitivity is remarkably higher for input values in the range [10, 15]. This is due to the
fact  that  the  most  subtle  clusters  fall  in  this  range,  namely  benign  clusters  with  a  high  number  of
calcifications or malignant clusters with a low (probably difficult to detect) number of MCs. The analysis
demonstrates that also for non-differentiable entity models with categorical output variables, sensitivity can
be estimated using the procedure described in this paper.
In  the  specific  context,  the  sensitivity  behavior  also  suggests  the  need  for  the  implementation  of  a
multivariate diagnostic system receiving in input not only the number of calcifications, but also the related
statistics on the MC area distribution, shape of the clusters, average distance among calcifications in the
clusters, to name a few [17]. In light of these considerations, further works will certainly investigate the case
of MISO systems,  accounting for effects like input  variables inter-correlation and cross-sensitivity (e.g.,
selectivity).

6. Conclusions
‘Sensitivity’ is a multifaceted concept, even when considered in the specific context of metrology, as its
many definitions that can be retrieved from the scientific and technical literature witness. As our analysis has
shown, it is unfortunate that this multiplicity produces at least partially inconsistent meanings: sorting out the
concept  would  increase  the  possibility  of  non-ambiguous  inter-subjective  communication,  as  related  in
particular to the specifications of measuring instruments and systems. The strategy we have proposed and
adopted here assumes the possibility and suggests the appropriateness to develop a conceptual framework in
which sensitivity is qualitatively a feature of a black box behavior, quantitatively specified according to
specific evaluation types. Formal definitions have been proposed and commented for both deterministic and
stochastic behaviors in reference to the three basic types (interval / ratio; ordinal; nominal), in such a way
that for each type ‘deterministic sensitivity’ is a specific case of ‘stochastic sensitivity’.
When  uncertainty  is  not  negligible,  the  proposed  definitions  significantly  embed  a  distinction  between
“effective” and “confounding” components, that can be simultaneously present in stochastic sensitivity and
contribute to a desirable and unwanted increment of global sensitivity respectively. Two examples, about the
characterization  of  imaging  systems  such  as  scanners  for  medical  applications  and  of  a  computerized
diagnostic system for breast calcifications in mammography, provide some hints on the usefulness of the



proposed  framework  for  an  understanding  of  different  working  conditions  of  such  devices  or  for  the
improvement of the effectiveness of such diagnostic systems in screening mammography. Future studies
could be devoted both to extending this strategy to more complex systems and situations whose sensitivity
could be evaluated, and to applying the strategy itself, in its purely structural components, to the construction
of  structured  definitions  of  other  metrologically  relevant  concepts  such  as  selectivity,  resolution,  and
repeatability.
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