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Abstract: In the interests of fostering an inter-disciplinary dialogue, increasing collaboration between “hard”
and  “soft”  measurement  scientists,  and  learning  from  one  another,  the  paper  develops  an  analytical
discussion  of  common  elements  between  metrology  and  psychometrics.  A simple  example  of  physical
measurement  is  introduced  according  to  the  conceptualization  and  terminology  of  the  International
Vocabulary of Metrology (VIM), and then its structural analogy to a test using Guttman items is shown. On
this ground the example is generalized so to include a probabilistic component, and this leads to the basic
Rasch model. Some notes on the delicate issue of measurement validity conclude the paper, whose aim, in
the long run, is a measurement-related shared concept system, and a terminology understandable in both
physical and social sciences.
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1. Introduction
Measurement science is a good context in which to consider, once again, the asymmetric relations between
the natural  and social  sciences.  The impressive effectiveness  of  their  methods and instruments  seems a
sufficient reason for physicists, chemists, engineers, etc. to follow their path and be largely uninterested in
developments  in  the  measurement  of  non-physical  properties.  On the other  hand,  even though in many
aspects emancipated from “physics envy”, it is not unusual for social sciences to take physical measurement
as a  reference,  and possibly a target  point,  given “their  propensity to imitate as closely as  possible  the
procedures of the brilliantly successful physical sciences” [1].
The  fact  that  sensors  implementing  physical  effects,  the  core  components  of  physical  measurement
instrumentation, cannot be exploited for non-physical properties has discouraged passive imitation, and this
has (at least in part) led to the development of different theories, methods, and instruments in the area of
social measurement. The two disciplines grew up along parallel routes, sometimes approaching each other –
a significant example is Finkelstein’s endeavor to import representational theories in physical measurement –
but  also  sometimes with  clashes,  as  in  the  well  known case  of  the  committee  activated  by  the  British
Association for the Advancement of Science in the 1930s (extensively discussed in [2]; a more concise
analysis  is  in  [3]),  which  produced,  among  other  effects,  the  predominance  of  operationalism  in
psychological measurement for much of the 20th century, as well as Stevens’ theory of scale types [4].
In the mentioned asymmetric situation, it may be interesting to continue exploring the contributions that
social measurement has to offer to physical measurement. An excellent context in which to pursue this goal
is  so-called  Rasch measurement,  an approach to measurement developed within the  social  sciences  that
posits that the mathematical model of measurement is such that:
1. the result of the experimental stage of measurement, i.e., the indication, is given in probabilistic, instead of
deterministic, terms;
2. measurands can be meaningfully compared by their ratio.
It is surely not a new subject and of which several introductory texts exist. However, these texts, and the
scientific papers describing this approach to social measurement, are, in general, not always easily readable
by physical measurement researchers and practitioners. There are at least two reasons of this difficulty:

# One of the authors is a member of the Joint Committee on Guides in Metrology (JCGM) Working Group 2 (VIM).
The opinion expressed in this paper does not necessarily represent the view of this Working Group.
A preliminary version of this paper was the basis for a keynote lecture jointly presented by the authors at the 2013
Joint IMEKO TC1 - TC7 - TC13 Symposium, 4-6 September 2013, Genova, Italy. Several enhancements resulted
from the lively discussions at the Symposium.
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 the emphasis in these texts on measurability specified in terms of algebraic conditions,  whereas
physical  measurement  is  a  moving  target  on  this  matter  (for  example  ordinal  measurement  is
routinely accepted nowadays);1

 some critical  differences in the presentation of basic concepts and the related terms,  so that  for
example “latent trait” (or “latent variable”) and “manifest observation” are sometimes used in social
measurement for “measurand” and “indication” respectively

Even the expression “Rasch measurement” sounds peculiar in metrology, where names are typically given to
measurement principles (e.g., Peltier effect) and measuring instruments (e.g., Bourdon pressure gauge), and
“x measurement” is reserved to x = given quantity, as in “force measurement”. Apart from historical reasons,
a possible justification of the expression “Rasch measurement” is that it can be thought of as referring to a
combination of a measurement method and some assumptions on the underlying measurement principle. For
this reason we will adopt here the more appropriate “Rasch measurement models”, or the simpler “Rasch
models”. But are Rasch models actually  measurement models? In the last part of the paper this delicate
question is considered.
While  we  do  not  necessarily  expect  that  Rasch  measurement  models  would  be  immediately  useful  for
physical  measurement,  a  common,  well  founded  understanding  on  them  might  foster  more  fruitful
relationships  between physical  and  social  measurement,  towards a  desirable  shared  concept  system and
related terminology. This is  the underlying purpose of the present paper, which introduces the basics of
Rasch  models  by  systematically  interpreting  them  in  the  conceptual  and  lexical  framework  of  the
International Vocabulary of Metrology, third edition (VIM) [7], a freely accessible document that may be
consulted in parallel to this paper (the first occurrence of terms taken from the VIM is in italics, so to ease
the search of the corresponding definitions in the VIM).
The paper can be read as an interdisciplinary exploration of the concept of (mathematical)  measurement
model –“mathematical relation among all quantities known to be involved in a measurement” according to
the VIM  – particularly when specialized as a  measurement function, i.e., the function that formalizes the
(inverse)  behavior  of  the  sensor at  the  core  of  the  measuring  instrument,  and  that  produces  measured
quantity values when applied to indication values and possibly values of other quantities such as corrections
and  influence quantities.  The fact  that  this  is  a purely structural  characterization makes it  applicable in
principle to both physical and social  instruments: Rasch models are indeed measurement models in this
sense, where typically indications are outcomes of tests (e.g., in the form of number of correct answers) and
measurands are properties such as attitudes, abilities, ... of individuals. A whole family of models is termed
after Rasch, all sharing this basic structure. In Section 4 the simplest of them will be presented. A by-product
of the paper is then to show that a significant case of measurement in social sciences can be effectively
spelled  out  in  metrological  terms.  An  admittedly  simple,  and  somehow artificial,  example  of  physical
measurement will guide us to recognize the analogies between physical transducers and tests, as they can be
understood as measuring instruments of Rasch models and psychometrics in general (to emphasize such
analogies  the  symbols  will  be  maintained  to  be  consistent  in  the  two  cases,  thus  departing  from  the
accustomed symbols in Rasch models). The conclusions drawn from this comparison will be devoted to the
validation of measurand definitions / models, an issue that physical and social measurement usually approach
with different strategies.
Our hope is that from what follows natural scientists and engineers may learn something of Rasch models, as
a specifically relevant case of social measurement, and social scientists may re-interpret something of their
knowledge of measurement in the light of the current physical measurement models.

1 An interesting example concerns the possible requirement that the scale is continuous, or at least its elements are
dense (i.e., isomorphic to rational numbers), that in Holder’s axioms is expressed as “For every magnitude there
exists one that is less.” (and note that Holder himself presents his aim in this way: “I intend only to propose a
simple system of axioms from which the properties of the  ordinary continuum of magnitudes can be derived.” –
emphasis added) [5]. This implies that counting cannot be a type of measuring and that discrete properties are not
measurable. According to Joel Michell [2], “we have no good reason to suppose that measurable quantities are not
continuous.” This is in stark contrast to the views of many scientists. Consider, for example, the following quotation
from Richard Cox, working from a different tradition: “Reflection suggests, indeed, that the only perfectly precise
measurement  is  counting  and  that  the  only  quantities  defined  perfectly  are  those  defined  in  terms  of  whole
numbers.” [6].
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2. Example 1: Hookean springs and Boolean springs
With the aim of measuring a given force f, a spring can be exploited as an indicating measuring instrument,
and specifically as a sensor, which is supposed to behave according to a transduction function (sometimes
also called “observation function”) specified by Hooke’s law:

k

f
=x (1)

i.e.,  the  measurement  principle  is  that  a  force  f applied  to  a  spring  of  elastic  constant  k generates  an
elongation x in the spring (we will omit measurement units from now on, but of course N is the unit of f, m is
the unit of x, and Nm–1 is the unit of k).
The measurement principle is then that the measurand f is transduced by the spring of elastic constant k and 
generates an indication x: it is the usual input-output characterization of a device behavior, the measurand 
being the cause, and the indication the effect of the transduction process.
The  relation  between  indication  values  and  measured  quantity  values,  together  with  instrumental
measurement uncertainty,  is  provided by the  calibration of  the  spring,  that  in this example (as long as
uncertainty is neglected) consists in establishing a value for the constant k. As long as eq. (1) is maintained,
this can be obtained by applying to the spring a single  measurement standard which realizes a force  f of
known value, reading the corresponding value for the obtained elongation x, and inferring the value of the
elastic constant k from the pair value of f, value of x
Once the instrument has been calibrated, and therefore a value for k is given, a measurement is performed by
applying the measurand f to the spring, getting an indication x and finally exploiting the inverted version of
the law:

f = kx

i.e., applying a measurement function:

measurand = measurement_function(indication, other_quantities)

so as  to  obtain a  measurement  result (in  the  simplest  case  a single  measured quantity  value,  but  more
generally a more complex entity such as a measured quantity value and a standard measurement uncertainty
or a whole probability distribution over the set of quantity values). Calibration, from which a measurement
model is defined, is aimed at guaranteeing the metrological traceability of measurement results, and thus in
particular  their  independence  from  any  specific  measuring  instrument  (whereas,  of  course,  indications
depend on both the measurand and the measuring instrument).
Even such a simple measurement is then both an experimental and a formal process, structurally based on the
following inference:
1. if the measurement model is correct, and
2. the instrument is correctly calibrated, and
3. an indication value has been experimentally obtained, and
4. the measurement function is applied to the indication value
5. then a value for the measurand is obtained
(once again: we are neglecting measurement uncertainty, which generally should be considered in particular
to take into account the effect of the influence quantities, such as the spring temperature, on the indication).
Accomplishing a measurement according to this inferential process assumes the premises of the process (and
therefore in the present example in particular the scale type of the involved quantities and the linearity of
their  functional  relation)  as  taken  for  granted.  Were  the  validation of  the  measurement  model  or  the
instrument calibration the target, some other, independent process could be performed and its results properly
analyzed.
The calibration process critically depends on the hypotheses assumed regarding the transduction function by
which the spring behavior is modeled. For a linear, zero-fixed function, as in the case of transducers modeled
as behaving according to Hooke’s law, a single calibration point is sufficient to establish the slope of the
straight line. Were only a generic causal dependence of x on f assumed, then according to a black box model
of the behavior, the calibration should be performed by exploiting multiple measurement standards, each of
them realizing a different value of force, so to obtain multiple pairs value of fi, value of xi, to be suitably
interpolated to produce the measurement model, in either analytical or numerical form. A decisive point here
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is that performing measurement by means of a transducer does not require the transduction function to be
analytically known. Of course, if the transduction function is known in its analytical form and is invertible in
the measurement range, then the measurement function is the inverse of the transduction function:

indication = transduction_function(measurand, other_quantities).

But in general the only critical measurement-related requirement on the transduction process seems to be its
causality,  i.e.,  the  assumption  that  the  indication  depends  on  the  measurand,  and  therefore  conveys
information on it. This guarantees that at least in principle measured quantity values can be computed from
indication values through the measurement model / function (the same concept is spelled out in different
ways, e.g., “models are used to convert observations into measurements” [8]).
Suppose now that, instead of a spring whose behavior is described by Hooke’s law, a modified spring is
available, again characterized by a constant  k related to its stiffness, operating according to the following
transduction function:










 1 position, fixed a  toelongates spring  then the1,if

0 position,rest  itsin  stays spring  then the1,if

=x
k

f

=x<
k

f

(2)

Let us call such a transducer a “Boolean spring”, whereas a “Hookean spring” will  be the term for any
transducer behaving according to eq. (1).
While the behavior of a Hookean spring is mathematically modeled as a continuous, linear function, eq. (2)
defines a function whose range is discrete, and in fact binary. A second major difference between eq. (1) and
eq. (2) is related to the dimension of the parameter k: in the case of Hookean springs, dim f / k = dim x = L,
and therefore  dim k = MT–2.  On the other  hand eq.  (2)  assumes that  dim f / k = 1 (i.e.,  is  a  quantity  of
dimension one – sometimes the term “dimensionless quantity” is used in this case), so that dim k = dim f for
Boolean  springs.  The  fact  that  now the  parameter  k  is  dimensionally  homogeneous  to  a  force  has  the
important consequence that it can be interpreted as a “threshold force”, such that the spring elongates only if
the applied force is greater than the threshold. This supposition will be crucial for what follows, as it allows
the comparison of the involved quantities not only through ratios (f / k > 1) but also through differences (f –
k > 0)  and  orderings  (f > k),  and  therefore  makes  it  possible  to  place  values  of  the  measurand and the
parameter of the measuring instrument in the same scale, as in Fig.1.
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Figure 1 – The transduction function of a Hookean spring and a Boolean spring, both with k = 2 (see eq. (1) and (2)).

Calibrating a Boolean spring ideally requires applying a continuously increasing force whose values are
known and registering the value f ’ of the force that makes the spring elongate, so that k = f ’. Having applied
a measurand f to a calibrated Boolean spring, let us suppose that the indication value x = 1 has been obtained.
The only conclusion that can be drawn in this case is that f / k  1, and therefore that f  k. Hence, despite the
underlying algebraically rich scale of the quantity subject to measurement, the Boolean spring operates as a
pass-fail classifier, and the measurand is actually dealt with as an ordinal quantity. While the scale type of
the measurand determines the richest possible scale type of the measurement result, the characteristics of the
measurement may lead – as in this case – to a weaker scale type (the distinction between property types and
property evaluation types is extensively presented and discussed in [9]).
A critical issue is about the instrument  resolution, defined by the VIM as “smallest change in a quantity
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being  measured  that  causes  a  perceptible  change  in  the  corresponding  indication”.  The  resolution  of  a
Boolean spring is the inverse function of the distance |f–k|: for forces far enough from the threshold k, the
resolution is practically null.  With the aim of increasing the instrument  resolution, and then refining the
measurement result, let us suppose that an array of N calibrated Boolean springs is available, each of them
with  a  different  constant  ki,  and  sequenced  so  that  ki < ki+1 (sequencing  is  an  immediate  by-product  of
calibration). The measurement procedure specifies now that the measurand f has to be applied to the Boolean
springs in sequence until the j-th spring is determined such that:

 f elongates all springs i, i < j, i.e., the indication value xi = 1 is obtained, so that f  ki;

 f does not elongate the j-th spring, i.e., the indication value xj = 0 is obtained, so that f < kj

(hence if j = 1, i.e., no springs are elongated, f < k1, and if j = N+1, i.e., all springs are elongated, f  kN). 2

In the simplest case of a sequence of N=2 Boolean springs, with constants k1 and k2, k1 < k2, three cases can
then arise:
() x1 = 0, i.e., the applied force does not elongate any Boolean spring: f < k1;
() x1 = 1 and x2 = 0, i.e., the applied force elongates the first Boolean spring but not the second one: k1  f < k2;
() x2 = 1, i.e., the applied force elongates both the Boolean springs: f  k2.
Let us call such a scale “B[k1k2]”, i.e., a Boolean scale of order [k1k2], so that the three cases might lead to
attribute quantity values such as 0 B[k1k2], 1 B[k1k2], and 2 B[k1k2] respectively, to be read “0 in scale B[k1k2]”
and so on. Indication values could be then reported by counting the number of elongated Boolean springs to
give a “raw score” x’, i.e., the indication for the array of Boolean springs:
() if x1 = 0 (and therefore x2 = 0) then x’ = 0;
() if x1 = 1 and x2 = 0 then x’ = 1;
() if x2 = 1 (and therefore x1 = 1) then x’ = 2
(in the above, the maximum raw score is taken as implicit, but it might be more complete to say that x’ = 0
should be interpreted as “0 out of 2” or “0/2” and so on).
This is an interesting situation in which the available underlying model on the measurand, i.e.,  classical
mechanics,  interprets  it  as  a  ratio-scale  quantity  and the  instrument  indication  can  be thought  of  as  an
absolute-scale quantity (as any cardinality, number of elongated Boolean springs in this case), and at the
same time the measurand is actually measured in a weaker scale (we are referring to the classification of
scale types proposed in [4]. Some of the strong, sometimes vehement, objections that it received are founded
on the peculiar lexicon in the presentation, in particular relating to the choice of calling “permissible” or
“admissible” the scale-invariant transformations / statistics (“Stevens’ attempt to legislate acceptable uses of
statistical methods is better forgotten” [10]). What properly remains is indeed the (correct) algebraic concept
of scale invariance). Indeed, even if the ratios kj / ki were known by calibration, so that for example k2 / k1 = 2,
from fa = 1 B[k1k2] and fb = 2 B[k1k2] the correct conclusion would be fb > fa, whereas fb = 2 fa would be generally
unjustified: the measurement result fa = 0 B[k1k2], obtained from the indication value x1 = 0, is to be interpreted
as fa < k1, and so on. As in the case of a single Boolean spring, the information conveyed by a measurement in
the  B[k1k2]  scale  is  purely  ordinal.  Note,  however,  that  the  underlying  ratio-scale  quantity  could  be
approximated to an arbitrary degree by inserting more Boolean springs into the measurement system, so to
obtain  intervals  small  enough to  be suitably  represented,  e.g.,  by  their  middle  points,  and therefore  by
rational numbers.

3. Example 2: A Guttman scale for attitude
Now consider the issue of how to measure an attitude f of persons a, b, ..., fa, fb, ... for short, where a test is
designed for this purpose, including a set of N items with dichotomous responses, i.e., each item producing
an  indication  x,  either  x = 1  or  x = 0  (positive  and  negative  response  respectively).  Indications  are
hypothesized depending on both the attitude of the person and the difficulty k of the test item.
As shown in Fig.2, the black box modeling highlights the (high level) isomorphism of this example with the
previous one.

2 While the analogies with the behavior of a quantizer are manifest, an array of Boolean spring is a transducer, not a
quantizer. Indeed, no hypotheses are assumed on the structure of the measurand, which might even be known as an
already discrete quantity.
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Figure 2 – Black box models for examples 1 and 2.

The dependence of attitudes (of persons) and difficulties (of test items) is sometimes presented in terms of
their direct comparison, a peculiar position given that in principle they are properties of different  kind. On
the other hand, item difficulty can be interpreted as the minimum attitude required to respond positively to
the item itself, and we will consider it as such here.
Let us suppose that a basic model for f and the test is accepted such that:
(1) a non-empty set of persons a, b, ... is given, such that each of them has, to a higher or lower degree, the
attitude f; the attitude f is assumed to be at least ordinal, i.e., some independent knowledge (as obtained by
item calibration and validity studies) is available justifying the invariance of the relation fa < fb, meaning that
the person b has a greater / better attitude f than the person a; the dependence on time is implicit here: at a
different time it might well be that fa > fb;
(2) a test including one or more items is given, such that each item has an f-related difficulty k; being in its
turn of the kind of an attitude, the difficulty k is also assumed to be at least ordinal, i.e., some independent
knowledge is available justifying the invariance of the relation ki < kj, meaning that the item j is more difficult
than the item i with respect to the attitude f, i.e., the item j requires a greater / better attitude f to be responded
positively than the item i;
(3) for a person a and an item i, fa and ki can be compared, and the item transduction function:





 1 positive, be)  to(expected is response  then the,if

0 negative, be)  to(expected is response  then the,if

=xkf

=xk<f

iia

iia
(3)

is assumed (note that the indication should be denoted xa, i: the subscript a will be omitted for simplicity).
The test, whose items have been calibrated and then sequenced according to their difficulty (also in this case
calibration  consists  in  establishing  a  value  for  the  constant  k),  i.e.,  ki < ki+1,  can  be  then  exploited  as  a
measuring instrument for f, on the basis of the measurement procedure specifying that the person a whose
attitude fa is the measurand has to respond to the test items in sequence until the j-th item is determined such
that:

 a responds positively to all items i, i < j, i.e., the indication value xi = 1 is obtained, so that fa  ki;

 a does not respond positively to the  j-th item, i.e., the indication value  xj = 0 is obtained, so that
fa < kj

(hence,  as  above,  if  j = 1,  i.e.,  a responds negatively to all  items,  fa < k1,  and if  j = N+1,  i.e.,  a responds
positively to all items, fa  kN).
Exactly as in the case of an array of Boolean springs, in the simplest case of a test of two items, with
constants k1 and k2, k1 < k2, three cases can arise:
() x1 = 0, i.e., a does not respond positively to any item: fa < k1;
() x1 = 1 and x2 = 0, i.e., a responds positively to the first item but not to the second one: k1  fa < k2;
() x2 = 1, i.e., a responds positively to both items: fa  k2.
Let us call such a scale “G[k1k2]”, i.e., a Guttman scale of order [k1k2]. In a Guttman scale items are indeed
arranged in an order so that an individual who agrees with a particular item also agrees with items of lower
rank-order [11].  As considered before for the arrays of Boolean springs,  the information conveyed by a
measurement in the G[k1k2] scale is purely ordinal.

The analogies of this example and the previous one about arrays of Boolean springs are manifest, as Table 1
shows.3

3 A delicate point is about the role of the person ain the test. The measurand is here a property of a, which is then the
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Table 1 – Structural analogies in the measurement of force by means of arrays of Boolean springs and of attitude
by means of tests of ordered dichotomous items.

measurement of force measurement of attitude

object under measurement: an object a that can exert a force a person a that can exhibit an attitude

measurand: force fa applied by a attitude fa of a

measuring instrument: array of Boolean springs test as a sequence of ordered items with
dichotomous responses

measurement principle: Boolean springs elongate if the applied force 
is sufficiently great

test items are responded positively if the 
attitude of the person is sufficiently great

instrument parameters to
be calibrated:

elastic constants ki of Boolean springs difficulty constants ki of test items

calibration outcome: attribution of value to the elastic constants
of Boolean springs

attribution  of  value  to  the  difficulty
constants of test items

measurement procedure: application  of  a  force  to  the  Boolean
springs in sequence

responses of test items in sequence

indication (“raw score”): sequence/number  of  Boolean  spring
elongations

sequence/number of item responses

measured quantity value: value in a scale such as B[k1k2] value in a scale such as G[k1k2]

This  makes  the  discourse  about  arrays  of  Boolean  springs  and  tests  of  ordered  dichotomous  items
interchangeable, and both understandable in the same concept system and with the same lexicon. Rasch
models builds upon these bases.

4. Extending the examples: Rasch models
Two crucial assumptions need to be added to this measurement setup to make it a Rasch model:
1. the result of the transduction is given in probabilistic, instead of deterministic, terms and the probability of
positive response increases as the person attitude increases and decreases as the test item difficulty increases;
2. attitudes (and difficulties) can be meaningfully compared by their ratio.
Let us argue about these assumptions and develop their consequences.
Transduction, as performed by a Boolean spring or a test item, has been modeled above by means of a
deterministic function: if the measurand exceeds the instrument parameter a ‘pass’ indication is obtained, and
a ‘fail’ indication otherwise. A deterministic transduction function, and thus a deterministic measurement
model, might be considered not appropriate in some cases, and in particular for the measurement of attitudes.
Hence, the instrument output could be modeled as a probability distribution, instead of a singleton, thus
interpreting:

 the presence of  an underlying unobserved variable,  i.e.,  an influence quantity, whose variability
determines the probability distribution on indications;

 the non-deterministic dependence of the indication on the measurand;4

 the hypothesis that the measurand is itself stochastic (this, which recalls some interpretations from
quantum physics, is discussed in the context of psychometrics by [13]).

Accordingly, the probability of positive response given the attitude  f and the item difficulty  k,  P(x = 1|f,k),
denoted P1 for short, is introduced so that P0 = 1 – P1 is the probability of negative response, P0 = P(x = 0|f,k) in

object under measurement (the VIM does not define the concept, and sometimes uses the expression “phenomenon,
body, or substance”), and not (part of) the measuring instrument. In other contexts, where the aim the acquisition of
information on a different object, the person could instead be (part of) the measuring instrument, as in the case
questionnaires are used to collect opinions on the perceived quality of products or services.

4 Non-deterministic  transduction  models  are  unusual  in  (classical)  physical  measurement,  where  transduction  is
based on deterministic physical effects. On the other hand, probabilistic models of measurement have also been
proposed in metrology (e.g., by [12]), and however are clearly a generalization of the deterministic ones. In this
sense in psychometrics Rasch models generalize Guttman ones.
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the same conditions. The reference here is to the attitude fa of a given person a and to the difficulty ki of a
given item i, so that the correct notation is, e.g., P(xa,i = 1|fa,ki). With this understanding the subscripts will be
omitted for simplicity.
Under the supposition that the item difficulty k is given, as resulting from calibration, and the indication x is
observed, P(x = 1|f,k) is in fact the likelihood of the attitude f. Qualitatively, an increase of the difficulty k for
a given attitude f is supposed to decrease the probability of positive response.
The operational definition of item difficulty k as minimum attitude required to respond positively to the item,
given in the deterministic case, has to be revised here, and the following definition is adopted:  k is the
attitude of a person whose probability to respond positively is 0.5, i.e.:

0.5 then ,if 1 =Pk=f (4)

(it should be noted that the measurement procedure introduced so far does not permit one to assess equalities,
so that this might be intended as a limit condition). Moreover:





 0.5 then ,if

0.5 then ,if

1

1

Pkf

<Pk<f
(5)

a probabilistic generalization of eq. (2).
The second assumption in Rasch models is that attitudes, and then item difficulties, can be compared by their
ratio, so that the empirical meaningfulness of attributing values in ratio scales to attitudes is assumed. The
previous condition can be then rewritten as:










 0.5 then 1,if

0.5 then 1,if

1

1

P
k

f

<P<
k

f

(6)

which, on the other hand, still does not give a specific value to P1 as a function of the two variables f and k,
and thus their ratio f / k. By noting that P1 increases if f increases given k, and P0 increases if k increases given
f, in Rasch models the ratio f / k is equated to the odds P1 / P0 = P1 / (1–P1):

1

1

1 P

P
=

k

f


(7)

Hence:

 
k

f
P

k

f
=

k

f
P=P 111 1   then 

k

f
=

k

f
+P 







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and finally:

kf+

kf
=P

/1

/
1 (8)

which may interpreted by stating that P1 is proportional to f / k, with 1 + f / k representing the proportionality
factor. The functional dependence of P1 on f and k is graphically represented in Fig.3.

8



Figure 3 – The probability P1 of positive response as a function of a person attitude f and item difficulty k (see eq. (8)).

The canonical form of the (dichotomous) Rasch model, here formalizing the transduction function of the test
item of difficulty k when submitted to a person of attitude f, is obtained by substituting the quantities f and k
with their logarithmic counterparts,  = ln(f) and  = ln(k), so that:5

   
   

 
 








exp1

exp

exp/exp1

exp/exp
1 +

=
+

=P (9)

Note  that,  although  this  is  the  standard  form  that  is  given  to  represent  the  Rasch  model  (although  it
sometimes appears in a logit or antilog expression instead) in the social sciences literature (see e.g., [8] or
[13]),  it  is  somewhat  unsatisfactory  to  metrologists,  as  it  is  not  an  explicit  algebraic  formula  for  the
measurand in terms of the indication. When eq. (9) is solved (i.e., estimated) in a statistical algorithm, and
the estimation is successful, there does indeed result a one-to-one mapping from the indicator (i.e., the “raw
score”) to the measurand , but this is usually simply an empirical table, and not expressed in a more elegant
fashion.
The functional dependence of P1 on , for  = 0, is graphically represented in Fig.4.
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Figure 4 – The transduction function of a Rasch model as a function of ln(f) = , with ln(k) =  = 0.
Note that the condition in eq. (4) is satisfied: P1 = 0.5 when  = , i.e.,  = 0.

The chart may be more generally interpreted by representing in the x-axis the values  – , i.e., ln(f / k), the
unit in this case being called the  logit (i.e., a contraction of “log-odds” unit). By definition, the logit of a

5 What is gained by the application of logarithms in transforming ratios into differences is lost in scale type. As
mentioned, f and k are assumed to be evaluated in a ratio scale, and therefore f/k is invariant under multiplication,
i.e., f/k = (cf)/(ck) for c  0. In general ln(f)/ln(k)  ln(cf)/ln(ck), i.e.,   and  are not invariant in ratio scale. On the
other hand, [ln(f1)–ln(f2)]/[ln(k1)–ln(k2)] = [ln(cf1)–ln(cf2)]/[ln(ck1)–ln(ck2)] for c  0. Hence  and  are invariant in
interval scale.
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probability  P is  ln(P/(1–P)).  In  this  case,  given the  assumption  that  P1/P0 = f/k,  the  value ln(f/k) = ln(f)–
ln(k) = – is “in logits”. The conceptually immaterial differences of a multiplicative factor and the base of
the logarithm do not hide the analogy with the way ratios of physical quantities are represented in decibels.
Hence the chart represents the probability that the measuring instrument (the test item / the Boolean spring)
produces a positive indication value (x = 1) as function of the measurand value (the person attitude / the
applied force) compared to the instrument parameter (the item difficulty / the spring stiffness) with units in
logits (note that 1 logit corresponds to   –  = 1, i.e., ln(f / k) = 1, and therefore  f / k = exp(1)  2.71). Once a
reference (“zero”) attitude / difficulty has been fixed, person attitudes and item difficulties can be evaluated
and placed on the x-axis (“a person whose attitude is i logits”; “an item whose difficulty is j logits”).
Despite its simplicity, this model has several interesting consequences. For example, let Pa be the probability
P1 for the person a, Pa=exp(a – )/Ga where Ga=1+exp(a – ), and let Pab be the probability that a succeeds
and  bfails,  i.e.  (under  the  assumption  of  statistical  independence),  Pab=Pa(1–Pb).  Easy  algebraic
transformations  lead  to  Pab=exp(a – )/GaGb,  so  that  Pab/Pba=exp(a – b)  and  finally  a – b=log(Pab) –
log(Pba), where  Pab might be estimated by the relative frequency of the items in which  a succeeded and
bfailed, and vice versa for  Pba. Hence, according to this model the (logarithmic, i.e., in logits) distance in
attitude between two persons is estimated by the logarithmic distance of such relative frequencies. From an
estimation point of view, this expression is also very useful, as it implies the separability of estimation of the
person parameters from the item parameters (and vice versa).

The information conveyed by a single Boolean transducer (a single item test / a single Boolean spring array)
is meager. To overcome this issue, a more complex measuring instrument can be adopted as discussed above,
made of multiple transducers each of them characterized by a parameter ki, as shown in Fig.5.
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Figure 5 – The transduction functions of three items / Boolean springs with  = –1.5,  = 0, and  = 4.

Under  the hypothesis  that  the transducer behaviors are  independent  of  each other, i.e.,  the  indication  xi

obtained from the  i-th transducer (depends on the measurand but)  does not  depend on the indication  xj

obtained from any other transducer, j i, the probabilities P1i can be meaningfully added, and the sum can be
interpreted as the total score, i.e.,  the indication, produced by the test.  Note that,  in the case of attitude
measurement  this  implies  that  having  answered  item  i does  not  change  the  probability  distribution  of
correctly answering the j-th item.
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Figure 6 – The transduction function of the measuring instrument as in Fig.5.
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It is supposed that the generated transduction function is invertible at least in the points x = 0, x = 1, x = 2, and
x = 3, corresponding to the indication values that can be obtained as total scores of the test. The inverse of the
transduction function in these points is the instrument calibration function, and its graphical representation in
the diagram (indication  measurand) is the calibration curve, to which an indication value is applied to get a
value for the measurand, i.e., a measured quantity value, in logits or the (dimensionless) unit assumed for
attitudes.

5. The problem of validation
The  analogy  between  arrays  of  Boolean springs  and  tests  of  ordered  dichotomous  items  can  be  now
interpreted in terms of measurement, which in both cases (in all  cases, actually) has the structure of an
inferential process. Let us rewrite what has been considered above for the arrays of Boolean springs:
1. if the measurement model is correct, and
2. the instrument is correctly calibrated, and
3. an indication value has been experimentally obtained, and
4. the measurement function is applied to the indication value
5. then a value for the measurand is obtained.
We have shown that exactly the same can be said of tests, intended as measuring instruments of attitudes.
It  has  been  noted  above  that  measurement  assumes  certain  premises  required  for  the  inference  above,
particularly the scale types of the involved quantities and the structure of their functional relation: thus, these
are expected to be validated independently of the measurement. This theory-ladenness of measurement has
been emphasized at least since [14], and has become explicit in the very concept of measurement model as
defined in the VIM. The idea that traditionally measurement was intended as a process able to convey “pure
data” has been perhaps retrospectively overemphasized. Even in a book such as [15], which gave rise to the
operationalism,  one  can  read  sentences  as  “it  is  of  course  the  merest  truism that  all  our  experimental
knowledge and our  understanding of  nature  is  impossible  and non-existent  apart  from our  own mental
processes”.  In  the  case  of  springs  used  as  transducers,  dynamometers,  and  many  physical  measuring
instruments, the underlying theory is well established, it being the theories of physics themselves, so that this
principled  dependence  is  not  operatively  problematic  for  the  establishment  of  a  measurement  context.
Indeed, both the measurand (force) and the indication (length) are embedded in a rich network of relations
with other physical quantities,  which can be exploited to positively answer the question “is the quantity
measured by means of this spring actually a force?”.
The situation for the measurement of attitude, assumed here as exemplary of many non-physical properties,
is fundamentally different, since such a network of well-established theories is not available in this case 6 and
the  only  possible  way  out  might  seem  to  be  the  operationist  strategy:  “this  test  apparently  measures
something; let us call it an attitude.”. On the other hand, the claim of measurability is minimally grounded
here on the acknowledgment that an underlying, informal model of the property is an established common
understanding within the intellectual community from which the test developers derive their standing, and
the development of measuring instruments of it (such as through the Construct Modeling approach described
below) can be seen as a positive step towards a more formal model of the property. Without a previous, at
least informal knowledge on the attitude under consideration, the measurement of the unknown property
would be a  blind process  of  tentative discovery. The concept  of  ‘underlying model’ of  a  measurand is
explored in [17]. Hence the crucial step of the inferential process is here the first one: how to guarantee that
the measurement model is correct? And this brings up a preliminary issue: what is required for a model to be
a correct measurement model? The very concept ‘measurement model’ has been so recently formulated as
such  that  a  clear-cut  answer  to  these  questions  is  still  to  be  found.  As  already  mentioned,  a  minimal
requirement seems to be the hypothesis that the indication causally (but perhaps probabilistically) depends
on the measurand, and therefore the indication conveys information on the measurand itself.
In  the  social  sciences,  this  problem – that  is  almost  never  spelled out  in  the  measurement  of  physical
quantities – is addressed through the concept of  internal construct validity.  Here a  bootstrap strategy is
typically used: by means of the analysis of measurement results (i.e.,  their correspondence with what is

6 According to Ludwik Finkelstein [16], “Weakly defined measurement has one or more of the following features: (i)
it is based on an ill-defined concept of the quality, (ii) there is significant uncertainty in the empirical relational
system that it represents, (iii) the symbolic relational system has limited relations defined on it, (iv) there is no
adequate theory relating the measurement to other measurements in the same domain.”.
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expected  based  on  the  underlying  model),  the  measurement  model  itself  is  validated  and,  if  required,
progressively refined. This applies in particular to the assumption that attitudes are measurable in an interval
scale: under this hypothesis, Rasch models give a procedure to get measurement results from the raw data
provided by the answers given to the tests. The correspondence of such results to what is accepted about
attitude in terms of the informal model mentioned above is a confirmation that the hypothesis was correct:
the instrument does measure an attitude, and useful information on the measurand has been obtained.
In psychometrics this bootstrap strategy has several  characteristic versions.  The most  widespread one is
associated  in  practice  with  the  so-called  Classical  Test  Theory  (CTT):  it  is  the  traditional  “blueprint”
approach [18], [19] which includes the following activities:
(a) the definition of the measurand;
(b) the instrument setup, as a specification table for the items that will be used to gather data about the
measurand – this is traditionally referred to as the “blueprint” – typically involving, say in the case of an
achievement test, a matrix of skills by content;
(c) the instrument calibration, as a set of rules for scoring the responses to the items, which may range from
very simple rules for a multiple choice item (e.g., the correct option is scored 1 and the rest are scored 0) to
very complex rules requiring human judgments, and a training for the raters and a reconciliation program for
inconsistent ratings;
(d)  the  validation  stage  as  such,  consisting  in  checking  the  empirical  relationships  between the  results
obtained by means of the instrument with the values of other, independently acquired variables that are
hypothesized to have relations to the measurand.
In addition, several other validation strategies have been proposed – these have been changing in their nature
and emphasis over the past 100 years or so of the history of measurement in the social sciences – such as
those based on content analysis of the items, evidence concerning the response (i.e., transduction) process,
and evidence concerning the consequences of utilizing the measurements results [20].
An alternative approach, termed Construct Modeling, starts off by assuming that the model of the measurand
can be  represented  by  discrete  values,  or  “levels”,  in  a  linearly  ordered  sequence,  each  value  possibly
intended as corresponding to a segment of a continuum, from a lowest to a highest level. In this context the
measurand model is typically called its  substantive theory, i.e., a theoretical background to the measurand
itself that provides one with some sort of a structure to compare with empirical evidence, particularly in the
validation process. In social sciences such substantive theories may be in a form other than equations, such
as  a  verbally-defined  relationship,  and  even  a  diagrammatic  one.  Consider,  moreover,  that  the  term
“construct” is used in psychometrics to refer to the property object of the model, i.e., the measurand. When
these levels are laid out in a diagram, as in Fig.7, it is termed a “construct map”.

Figure 7 – A sketch of the construct map for the Physical Functioning subscale (PF-10) of the SF-36 Health Survey.
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The main difference with the CTT is that,  in activity (a),  the blueprint is  specified as a construct  map,
consisting of successive levels, and, in activity (d), the validation stage consists principally of the checking
the  consistency  of  the  empirically  estimated  levels  (as  recorded,  for  instance,  as  in  the  “Wright  map”
described below) with the hypothesized ordering shown in the construct map.
In order to make the argument here more accessible, we will describe a concrete example that was developed
in the context of a person’s judgment of his typical physical performance: the Physical Functioning subscale
(PF-10) [21] of the SF-36 health survey [22]. The SF-36 instrument is used to assess generic health status,
and the PF-10 subscale assesses the physical functioning aspect of that. The items of the PF-10 consist of
descriptions  of  various  types  of  physical  activities  to  which  the  respondent  may respond that  they  are
typically either “Not limited at all”, coded as 1, or “Somehow limited”, coded as 0. 7 The actual items in this
instrument  are  given in  Table  2.  An initial  construct  map for  the  PF-10 is  shown in Fig.  7,  where  the
sequence of increasing ease of physical  functioning can be noted,  as indicated by the order of the item
responses. This sequence ranges from very much more strenuous activities, such as those represented by the
label “Vigorous Activities”, down to activities that take little physical effort for most people. The full item
set for the PF-10 is shown in Table 2, along with the abbreviations that are used in the Figures and the text
for each item. In developing the items, the levels of the construct map can be linked to the items as follows:
Easy: 9, 10; Moderate: 2 to 8; Vigorous: 1.
Note that the definition of the levels in this example is given solely in terms of the ordering of the items.
However, in general, it is also possible to display the order using levels of the persons responding to the
items (the “Respondents”), and that is why in Fig.7 there is a column on the left hand side also. In this
example, the instrument developers did not use that possibility, and hence the left column is empty.

Table 2 – Items in the Physical Functioning subscale (PF-10).

Item n. Item label Item description
1 VigAct Vigorous activities, such as running, lifting heavy objects, participating in strenuous sports
2 ModAct Moderate activities, such as moving a table, pushing a vacuum cleaner, or playing golf
3 Lift Lifting or carrying groceries
4 SevStair Climbing several flights of stairs
5 OneStair Climbing one flight of stairs
6 Bend Bending kneeling, or stooping
7 WalkMile Walking more than a mile
8 WalkBlks Walking several blocks
9 WalkOne Walking one block
10 Bath Bathing or dressing yourself

A large data set of patients’ responses to these items has been collected [23], and a Wright map has been
calibrated using the Rasch model to estimate the item difficulties from those data, dichotomized as described.
The results are displayed in Fig.8 using a Wright map, with the respondents’ locations and items’ locations
presented on either side of a vertical line.
There are a number of features in the Wright map that are worth pointing out. The dashed vertical line in the
center represents the measurand in logits, relating the measurand itself to the probability of response, i.e.,
indication. The raw score units are also presented to the right of the logits (e.g., 0 logit corresponds to having
a moderate level of physical functioning, similar to a raw PF-10 score of 5). On the left hand side of the
central line, under “Respondents,” the locations of the respondents on the logits scale are indicated by “X”s.
These form a histogram showing the shape of the respondent distribution, a fairly flat, which is surely not a
Gaussian one, indicating that respondents had a wide range success in overcoming barriers toward physical
activity (given that these are hospital data, we expect to see a somewhat skewed distribution with more
respondents having lower levels of physical functioning, i.e., more respondents with negative logits). On the
right hand side of the central line, under “Item responses”, the locations of the items are shown. Each item
location indicates the amount of physical functioning a generic person must have if there is a 0.5 probability
of that person giving a positive response to these items. Comparing this Wright map to the construct map in

7 As developed, there were actually three categories of response to the PF-10, “Limited a lot”, “Limited a little”, and
“Not  limited at  all”.  Just  two categories  will  be considered here,  where the first  two categories  are collapsed
together, thus making the data dichotomous.
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Fig.7, we can notice several ways in which they differ. First, this map is not just a sketch of the idea of the
construct but an empirical map, based on respondents’ self-reports. A histogram of the responses is shown on
the left hand side of the map. What is unusual for a histogram is that the spaces between the bars of the
histogram are not evenly spaced. That is because the locations of the bars are the estimated locations of the
respondents, which can vary in a continuous way. Although each bar corresponds to a particular score, the
estimation procedure can result in person estimates located at any point on the continuum – they are not
located at integer values as are raw scores. The units for that continuous scale are shown on the far left hand
side, in the column headed “Logit”. The respondents range from those that are “less limited” at the top, to
those that are “more limited” at the bottom. Each location, i.e., each histogram bar, corresponds to a score on
the instrument, ranging from 0 to 9 (no one scored 10, so it is not shown).

Lo- Raw                      Item         Construct 
git Score   Respondents      Responses    Level
----------------------------------------------------
   |                       |VigAct                 |
4  |                       |                       |
   |                       |                   V   |
   |9  XXXXXXXXXXXXXXXXXXXX|                   I   |
   |                       |                   G   |
   |                       |                   O   |
3  |                       |                   R   |
   |                       |                   O   |
   |                       |                   U   |
   |                       |                   S   |
   |                       |                       |
2  |8      XXXXXXXXXXXXXXXX|                       |
   |                       |                --------
   |                       |                       |
   |                       |SevStair               |
   |7       XXXXXXXXXXXXXXX|                       |
1  |                       |WalkMile               |
   |                       |                   M   |
   |6          XXXXXXXXXXXX|                   O   |
   |                       |Bend               D   |
   |                       |ModAct             E   |
0  |5           XXXXXXXXXXX|                   R   |
   |                       |                   A   |
   |                       |Lift WalkBlks      T   |
   |4            XXXXXXXXXX|                   E   |
   |                       |                       |
-1 |                       |OneStair               |
   |                       |                       |
   |3              XXXXXXXX|                       |
   |                       |                 -------
   |                       |                       |
-2 |                       |WalkOne                |
   |2              XXXXXXXX|                   E   |
   |                       |                   A   |
   |                       |                   S   |
   |                       |                   Y   |
-3 |                       |                       |
   |                       |                       |
   |1            XXXXXXXXXX|Bath                   |
   |                       |                       |
   |                       |                       |
-4 |                       |                       |
   |                       |                       |
   |                       |                       |
   |                       |                       |
   |0              XXXXXXXX|                       |
====================================================

Figure 8 – A Wright map for the dichotomized PF-10 instrument (each X is approx. 18 cases; each row is 0.20 logits).

The right hand side of the map in  Fig.8 shows the estimated item locations, corresponding to the values
 = ln(k) in Eq. (9). Notice, for instance, that the respondents with a score of 6 are at almost the same point
on the map as the “Bend” item. This means that they have approximately a 0.5 probability of responding
“Not limited at all” to that item. Noting that “SevStair” is about 1 logit above this location, we can see that
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for  the  respondents  with  a  score  of  6  the  probability  of  getting  the  same  response  to  that  item  is
approximately  0.27.  And  since  “WalkBlks”  is  about  1  logit  below  this  location,  we  can  say  that  the
probability of respondents with a score of 6 giving the more positive response to that item is approximately
0.73 (these probabilities can easily be worked out using a calculator to implement eq. (9)).
In order to examine the evidence for construct validity, and specifically internal structure validity [20], we
examine  how well  the  results  reflected  in  the  Wright  map  correspond  with  the  theory  of  the  variable
embodied in  the  construct  map.  Comparing the right  hand side of  Fig.  8  to  the  right  hand side of  the
construct map in Fig. 7, we can see that “Vigorous activities” are indeed the most difficult, and that easy
activities like “Bathing” and “Walk one block” are located at the easy end of the Wright map. The items
hypothesized to lie between these two extremes do indeed so. Thus, the results of the Rasch analysis, as
expressed in the Wright map, show that the empirical data support the hypothesized grouping of the items
into the levels, and also the relative order of the levels.
Note that the pattern expected in Fig.8 is a quite simple one, and hence the example may seem almost trite:
in fact, in order to make the concept as straightforward as possible, we have indeed chosen a simple example,
and we are only illustrating the final round of data collection and analysis. Most often the results do not
come out anything like as cleanly as they have in Fig.8: more typically, the results from the initial data
collection for a new set of items will not reveal anything like the hypothesized order, and the instrument
developers then must return to their assumptions and examine each one, from the specifics of individual
items, to the design plan for items, to the specification of levels, and even, sometimes, all the way back to the
definition of the measurand. And this whole iteration may be required several times. This sort of analysis is
given a more thorough examination in [24] and [25].
As  was  noted,  the  checking  of  internal  structure  validity  consists  minimally  in  the  comparison  of  the
empirical evidence contained in the Wright map with the hypotheses embedded in the construct map. Hence,
in addition, one should also check on the technical evidence to support the specific statistical model that has
been used. In this case, that amounts principally to the checking of the fit of the data to the Rasch model. For
the data set used here, a reasonable fit was found [24], although there was some evidence that the VigAct
item was not working quite like the others (this perhaps relates to the fact that this item is far less specific in
its context than most other items).

6. Discussion and conclusions
The Rasch model relates the indications obtained by the experimental application of a test to a property
intended to be measured, and formalizes this relation through equations (7), (8), and (9), that could admit of
an empirical validation. This would typically be accomplished by assuming that the probability of positive
response P1 is approximated by the relative frequency of positive responses in a repeatable experiment. Since
metrologists  are accustomed to consider that  their  measuring instruments implement transduction effects
known by some physical law, we suspect that a typical approach to Rasch models by metrologists would be:
if these models work, i.e., if they are validated, then we have discovered an invariant, that can be exploited
for future measurements. Indeed, in the metrology terminology, (repeatability and) validation leads to (the
hypothesis of) reproducibility (of course, reproducibility implies repeatability, not vice versa).
Now,  the  usual  practice  in  measurement  in  the  contemporary  social  sciences  is  not  so  much  direct
observations of the form of the equation for  P1, but rather the checking of model fit, as mentioned above.
There are many different methods of testing fit that have been developed in the psychometric and also the
broader statistical literature – we will not try and summarize even a few of them here. But the core element is
that  the  aim is to find out  how “large” are  the  residuals,  the  difference between the responses  that  are
expected  given  the  estimated  parameters,  and  the  actual  observed values.  Hence,  the  residuals  will  be
aggregated in various ways that either (a) focus on specific aspects of fit, or (b) attempt to take a global
perspective. This step looks like merely a technical one, but it is indeed an equivalent of the “if they work”
step above.  To see this  occurring,  we have to  go back a  bit  in  psychometrics  history, and look at,  for
example, results reported by [26], shown in Fig.9, where the empirical cumulative probability distribution
functions (cdfs) are shown for student success on items, using their age as a proxy for their ability, i.e., the
measurand. In Fig.4, the x-axis is the measurand, and that is what one would prefer in Fig.9 also. However,
Thurstone did not have the statistical machinery behind Fig.4 available to him in 1925, so he used a variable
that he was very confident was a strong covariate, i.e., student age. These curves do indeed have a similar
shape to the Rasch curve shown in Fig.4 (in fact, they even show, predominantly, the prototypical Rasch
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feature that they do not intersect). Of course, similar curves can be obtained by other equations, in fact nearly
any standard cdf would do, the Gaussian cdf being also commonly used, although there has been strong
interest  in  the  logistic  function  due  to  its  relative  simplicity,  and  also  its  special  features  such  as  the
separability  of  estimation  of   and   [27].  A convergent  trend  has  also  been  from the  psychophysics
literature (see [28] for a summary account).

Figure 9 – Empirical cumulative probability distribution functions for student success on items, using their age as a
proxy for their ability.

The search for invariants is one of the experimental bases upon which physics has been built. In three steps:
0: no repeatability: everything is singular; nothing is invariant;
1. repeatability conditions are discovered: local, specific invariants;
2. reproducibility conditions are discovered: (more) global, (more) general invariants.
In the context of measurement in the social sciences, in one sense, the first step corresponds to the Classical
Test Theory, where item difficulties (for example) are deemed to be specific to an instrument and a sample of
persons. Then, in the second step, with the Rasch model, and other Item Response Theory (IRT) models, we
gain the possibility of having item difficulties that are useful across local contexts, so that we can have a
calculus of item difficulties that corresponds to possible selections of items into an instrument. But then, at
the third step, some new issues arise (such as Differential Item Functioning, the phenomenon that, for a
particular item, the transduction function is different for persons from different observed groups) where there
are limits to the item-person invariance that is hypothesized in the second step, and we have possibilities
such as gender, content, or rater effects on item difficulty, as well, at the ultimate point, of having enough
predictors to very precisely predict item difficulty.
In metrology, physical laws convey the evidence of reproducibility, and this allows us to build measuring
instruments whose behavior, provided that the specified measurement procedure is followed appropriately, is
indeed highly reproducible. The analogy, pursued here in Construct Modeling, is that the sequence of levels
operates in the validation argument in the place of a physical law, in the sense that it  provides us with
something to validate against. It is not familiar-looking, as the set of levels is an ordered set of locations on a
continuum, so it is not so elegant to write down as a physical law, but it is indeed a mathematical rule, thus:

if f is such that f < k1, then the person is in level 1;
if f is such that k1  f < k2, then the person is in level 2;

...
if f is such that kN–1  f < kN, then the person is in level N.

Of course, there are other ways to pursue greater complexities, and indeed to deconstruct the history of social
science  measurement,  for  example  by  adopting  more  complex  Rasch-type  models  which,  e.g.,  admit
polytomous items or take into account influence properties / quantities [29]. The simplest case of a Rasch
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model that we have presented here builds upon a Guttman model and adds the two assumptions introduced at
the beginning of Section 4, i.e.:
(i) the result of the transduction is probabilistic, instead of deterministic; and
(ii) the measurand is a ratio-scale quantity, instead of an ordinal-scale property.
Since these assumptions are, in principle, independent of one another, the following four cases emerge as
structurally possible:
A. deterministic indications obtained from the transduction of an ordinal-scale measurand, the case of the
Guttman model in psychometrics and of Mohs hardness, Beaufort wind strength, etc. in metrology;
B.  probabilistic indications  obtained  from  the  transduction  of  an  ordinal-scale  measurand,  as  for
probabilistic Guttman models [30]; all ordinal measurements whose measurement model takes into account
measurement uncertainties would be classified here;
C. deterministic indications obtained from the transduction of a ratio-scale measurand, the case of physical
quantities where measurement uncertainties are neglected;
D. probabilistic indications obtained from the transduction of a ratio-scale measurand, the case of located
latent class models [31] and, of course, Rasch models  in psychometrics; this is the  canonical case of the
measurement of physical quantities where measurement uncertainties are kept into account.
In  this  perspective  Rasch  models  belong  to  the  same  class  that  metrologists  consider  paradigmatic  of
measurement.  Moreover,  the  fact  that  in  Rasch  models  the  non-deterministic  contribution  comes,  even
independently of influence properties / quantities,  from the transduction function  – which is unusual for
metrology  – makes such models “templates” for a possible generalized,  because probabilistic,  theory of
measurement.
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