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On representing information:
a characterization of the analog/digital distinction

ABSTRACT: The common account of the analog vs digital distinction is based on features of physical systems, being
related to the usage of continuous vs discrete supports respectively. It is proposed here to alternatively characterize the
concepts of analog and digital as related to coding systems, of which a formal definition is given, by suggesting that the
distinction refers  to  the strategy adopted to  define the coding function: extensional  in digital  systems, isomorphic
intensional in analog systems. This thesis is supported by examples, in particular of analog systems exploiting discrete
supports, and is discussed so to explain why digital coding is currently so widespread in the technological and social
practice.

1. Introduction
The information  acquired  in  interacting  with  the  world  is  exploited  by  encoding  it  by  means  of  signs
recorded on more or less stable physical supports. As widely acknowledged, the analog vs digital distinction
(“A/D  distinction”,  from  now  on)  pertains  to  the  way  the  processes  of  encoding  and  recording  are
performed. Still, while the ways of encoding and recording are acknowledged as depending on both the
linguistic  level  of  signs  and  the  ontological  level  of  that  which  signs  refer  to,  less  emphasized  is  the
relevance of the relation, i.e., the code, that links the two levels. This multifaceted subject is not new in
philosophy, and its relevance has been acknowledged since the works by N. Goodman (1968) and D. Lewis
(1971).
This paper is aimed at giving a new account of the A/D distinction, construed as pertaining to the kind of
code exploited to perform the encoding process. This account is intended to provide a descriptive definition
of the distinction enabling us both to cover the paradigmatic cases to which the distinction applies and to
meet some basic desiderata stemming from the analysis of the theories proposed to classify such cases. The
thesis we propose can be synthesized as follows: a code can be interpreted as a function linking signs and
information entities, and the way of defining the code determines whether the representation is analog or
digital. In particular, if the code function is defined extensionally (i.e., by a list), the representation is digital,
whereas if it is defined intensionally (i.e., by a rule), the representation is analog.
According  to  such  a  characterization  the  concepts  ‘analog’ and  ‘digital’ pertain  to  processes  involving
information, but their specific scope is delimited to the complementary stages of encoding and decoding:
what is analog or digital is the representation of information. The option of extending the attribution, thus

 As  it  will  be  discussed  in  Section  3,  a  common understanding  relates  the  A/D distinction  to  the  continuity  or
discreteness of the physical system exploited as support in the encoding process. However, dissenting opinions have
already been put forward on this matter: Lewis (1971) focused the A/D distinction on information encoding, instead of
on features of the physical support, and his view has been recently further developed by Maley (2011). Although this is
a  definite  improvement  over  the  received  view, the  present  paper  will  try  to  show that  both Lewis’ and  Maley’s
positions are only in part  correct.  In particular, we believe that  Maley’s characterization of analog is substantially
correct, although not sufficiently general, but we dissent from his characterization of digital as the encoding of numbers
by means of a positional system.
 The reference of the A/D distinction to information encoding allows including the distinction between analog and
digital computation (see, e.g., Minsky (1972)) as a derived case, under the intuitive assumption that A/D computation is
a process operating on A/D coded entities. On the other hand, this admittedly excludes all purely functional and a-
semantic processes from the present analysis and proposal. For example, Piccinini and Scarantino (2011) adopt the A/D
distinction as referred to computation defined as “the processing of vehicles according to rules that are sensitive to
certain vehicle properties and, specifically, to differences between different portions of the vehicles” (p.10). According
to them, in digital computation “strings of discrete elements” (p.7) are manipulated, whereas “analog computers are
systems that manipulate continuous variables to solve certain systems of differential equations. Continuous variables are
variables that can vary continuously over time and take any real values within certain intervals” (p. 11).
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possibly  talking  about  analog  or  digital  description,  analog  or  digital  explanation,  analog  or  digital
computation,  ...,  is  understood as a rhetorical  move to refer  to description,  explanation,  computation,  ...
related to information represented as analog or digital.
The rest of the paper is devoted to introduce and defend this proposal, and is articulated as follows. Section 2
highlights some common intuitions about the A/D distinction and proposes two basic desiderata on a possible
interpretation  of  the  distinction.  Section  3  briefly  discusses  the  concepts  of  classification  system,  and
information together with the derived concept of coding system, on which the A/D distinction is grounded:
this establishes our basic terminology. Section 4 critically analyzes a number of views concerning the A/D
distinction as presented in technological and philosophical fields. On this ground in Section 5 the proposed
definition is finally introduced and commented. Section 6 contains some concluding remarks.

2. Basic intuitions
The A/D distinction is typically applied to the way in which information is represented by means of signs or
signals and,  by extension,  to systems implementing processes involving signs or signals such as clocks,
discs, cameras, computers. The quantitative representation of the motion of a runner as a function of time
exemplifies the basic features of the A/D distinction.
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In the analog encoding the heights of the histogram bars are proportional  to the traveled distances:  the
histogram is drawn by establishing a covariant relation, in fact a morphism, between the signs and what they
codify. In addition, since the traveled distance is typically interpreted as a continuous quantity, the histogram
bars  representing  it  may  have  in  principle  continuously  varying  heights.  In  the  digital  encoding  such
similarity disappears and the signs, sequences of digits in this case, are linked to the encoded entities by a
conventional relation. These considerations can be extended by considering the following paradigmatic cases
of representation of information:
(1) positional representation of positive integer numbers;
(2) positional representation of integer numbers;
(3) positional representation of rational numbers (e.g., –0.5, –0.2, 0, 0.2, 0.5);
(4) fractional representation of rational numbers (e.g., –1/2, –1/5, 0, 1/5, 1/2);
(5) representation of time by means of a sand clock;
(6) representation of time by means of a clock with dials;
(7) representation of time by means of a clock with digits;
(8) representation of music by means of a vinyl disk;
(9) representation of music by means of a compact disc;
(10) representation of a quantity by means of a histogram on paper;
(11) representation of a quantity by means of a histogram on PC screen;
(12) representation of a quantity by means of a table of numbers on paper or PC screen.

Cases (5), (6), (8), (10), (11) are typically acknowledged as analog representations, based on a similarity, or
analogy, between what represents and what is represented. Conversely, cases (1), (2), (3), (4), (7), (9), (12)

 As will become clearer below, it is the analogy between the lengths of the bars and the quantities the bars represent
that makes a histogram digital, not the physical mean (paper or PC screen) on which it is displayed. See particularly
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are typically classified as digital representations, exploiting numerical digits as means to encode the entities
to be represented according to a rule that is only conventional.
A preliminary classification of these examples is thus the following:

PRELIMINARY CLASSIFICATION classified cases non classified cases

analog representation (5), (6), (8), (10), (11) none

digital representation (1), (2), (3), (4), (7), (9), (12) none

In light of the previous examples, the following traits seem to be characteristic of analog or digital coding
respectively:

Analog coding:
A1. a similarity relation between the signs and the information entities they codify;
A2. signs used to codify such that a similarity representation is possible.

Digital coding:
D1. a conventional relation between the signs and the information entities they codify;
D2. signs used to codify that are discrete and (can be in one-to-one correspondence with) sequences of digits.

For  example,  the  histogram  representation  in  the  Figure  above  is  consistent  with  A1  and  A2,  since
information  is  represented  by  exploiting  a  similarity, or  analogy,  between what  represents  and  what  is
represented. On the other hand the table is consistent with D1 and D2, since information is represented by
using numerical digits that are conventionally related to what is to be represented.
In what follows we will use these cases, and the above preliminary classification, together with traits A1, A2,
D1, and D2, as a sort of empirical basis to assess theories. In particular, the classification will allow us to
argue on the theory to be preferred in a context in which competing theories T i are available, according to the
following two desiderata:

Desideratum 1: domain completeness.
Ti is to be preferred to Tj, if Ti has a broader scope, i.e., classifies more paradigmatic cases, than Tj.

Desideratum 2: intuition consistency.
Ti is to be preferred to Tj, if Ti is consistent with the preliminary classification and Tj is not.

Hence, the preliminary classification is not used to unconditionally rule out a theory, but only in a  ceteris
paribus situation, i.e., if the theory does not have a broader scope than its alternative(s). In addition, the
intuition on which Desideratum 2 is based is supported not only by the above considerations but also by the
fact that most of the accounts we are going to survey converge on the given preliminary classification.

3. Assumptions on information and coding systems
We assume here that the basic structure of information acquisition and communication can be conceived as
follows:

note 23.
 This  assumption is  consistent  with almost  every account  of  the  structure  of  information and  of  communication
process we are aware of (see Adriaans & van Benthem (2008), ch. 1 for a general introduction on the subject). In
particular, it is consistent with Floridi’s characterization of information (cfr. Floridi (2011a) and (2011b)). What he calls
data correspond to our set  O1 while his levels of abstraction correspond to possibly different sets of abstract objects.
The picture is presented to highlight that such a process is essentially based on an encoding function linking abstract
entities such as information contents and signs intended as types. This aspect is often not explicitly acknowledged in
standard presentations. For a compact introduction see Bremer and Cohnitz (2005).
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The idea is that the process of acquisition of information on a set O1 of entities is a process of classification
of such entities into a set  1 of abstract classes, which in virtue of a code is linked to a set  2 of abstract
signs. Abstract signs are then instantiated by concrete signs in  O2, thus said to convey information about
entities in  O1. Such concrete signs can be transmitted and interpreted by an agent who / which is able to
identify the entities in O1 as elements of the classification 1 by means of her / its knowledge of the code, so
that the information on the entities in O1 is communicated by transmitting the entities in O2.
Let us introduce some definitions to setup the conceptual framework. As an example, suppose that an object
(an element of  O1) is classified as a book instead of some other object, where being a book is an abstract
property (an element of 1). Hence, that the object is a book is a piece of information, that can be coded by
some signs (elements of 2), types which are instantiated in concrete tokens (elements of O2). These tokens
can be transmitted to an addressee. In order to decode the message the addressee must trace back the tokens
of the symbols to their types and then extract the piece of information coded by them.

3.1.Classification systems
Information is basically linked to classification.

Definition of classification system.
A classification system is a triple S = O,,ƒ, where:
i) O is a set
ii)  is a set
iii) ƒ is a function, called a classification function, from O to 

O is a set of  objects (also referred to as tokens), i.e., objects under classification.  is a set of  sorts (also
referred to as types), under which the objects of O are to be classified by means of the classification function
ƒ

Definition of coding system.
A coding system is a triple C = 1,2,ƒC, where:
i)  1 is  the  range of  a  classification function,  i.e.,  is  such that  there  exists  a  classification system  S =
O1,1,ƒ1
ii) 2 is a set of abstract objects (abstract signs), whose instances are producible and observable
iii) ƒC is a one-to-one function, called a coding function, from 1 to 2

By i), a coding system operates on the sorts which classify the objects of a set. By ii), the classifying objects
have both actually producible (i.e., it must be possible to write them) and observable instances (i.e., it must
be  possible  to  read  them).  Finally, by  iii),  a  coding  function  must  be  invertible,  so  that  decoding,  as
formalized by the mapping ƒC

1, generates unambiguous outputs.

 See  Barwise  and  Seligman (2007),  part  2,  and  Bremer and Cohnitz  (2005),  ch.  4.  To our knowledge,  the first
extensive use of the concept of classification for modeling information and information flow is due to Barwise (1989).
 “Object” is used here in a broad sense, as synonymous of “entity”, so that events, situations, facts and concepts are all
objects.
 In the definition above no constraints have been introduced on the cardinality of the sets . An objection might be that
a classification is useful only if its classes can be listed, and therefore  is finite or at most denumerable. On the other
hand, the A/D distinction, as characterized here, does not depend on this requirement, so that any further specification
on the definition of a classification system remains just an option.
 An anonymous referee objected that in principle the definition should be applicable to cases of ambiguous signs such
as words of natural languages. There are many ways to treat ambiguity in natural languages, one of which entails a
minimal depart from the framework sketched here. According to this treatment, ambiguity involves two different words
having two different meanings but the same phonetic (and/or graphic) form. For instance, in English there are two
words (“bank1” and “bank2”) having the same form, the first meaning “financial institution” and the second “raised area
along the side of a river”. Dictionaries usually presuppose this treatment of ambiguous words. The coding and decoding
functions take as arguments not “bank”, but “bank1” or “bank2” and this guarantees unambiguous outputs. Of course,
when an ambiguous word is decoded a preliminary process is in order, which must determinate whether the word to be
decoded is “bank1” or “bank2”. However, this process is usually not considered semantic but pragmatic. Sometimes
processes which precede semantic decoding are called  presemantic  (for example, see Perry (1997)). Were ambiguity
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Definition of information.
Let  S =  O1,1,ƒ1 be a classification system, such that the classification function ƒ1 is not a constant, i.e.,
there exist  oi,  oj1,  oioj, such that ƒ1(oi)ƒ1(oj). The object ƒ1(o)1 is said to be a piece of information
about the object oO1 with respect to 1, and S is said an informative classification system.

This concept of information is grounded on the minimal requirement that something,  y, is informative on
something, x, if from y some difference on x can be inferred. Indeed, ƒ1(oi) is informative on oi because there
must be at least one oj such that ƒ1(oi)ƒ1(oj). Hence from ƒ1(oi) the inference ‘the object classified by ƒ1 is
not oj’ is obtained.

Definition of conveying information.
Let C = 1,2,ƒC be a coding system. The object 2 is said to convey information on an object oO if
and only if there exists an informative classification system S = O,1,ƒ1 such that  = ƒC(ƒ1(o)).

Since ƒC is invertible, ƒC
1() = ƒ1(o); hence, by decoding  the class in 1 to which o belongs in virtue of ƒ1

is known. In this way, the previously introduced picture is wholly clarified.
On this basis the A/D distinction can now be discussed.

4. The customary understanding of the A/D distinction
Both the customary and the philosophical interpretation of the A/D distinction seem to be strongly influenced
by the way the distinction is understood in the theories of control systems and signals processing, where the
following general positions are, often implicitly, assumed: 1) ‘being analog’ is related to the continuity of
physical supports, or of the mathematical model of them; 2) ‘being digital’ is related to the discreteness of
physical supports, or of the mathematical model of them.
The definitions proposed by a specifically authoritative source in the technological field, the International
Electrotechnical  Vocabulary  (IEV)  resulting  from  the  standardization  activities  of  the  International
Electrotechnical Commission (IEC), seem to follow this interpretation. Given that (see IEV 351-21-53 and
IEV 351-21-54):

(i) an analog signal is a signal whose information parameter is a physical quantity which may assume any
value within a given range at any instant within a continuous time interval

(ii) a  digital signal is signal whose information parameter may assume one out of a set of discrete values
within a given range

the following definitions are proposed:

analog := pertaining to the representation of information by means of an analog signal.
(see IEV 101-12-05)

digital := pertaining to the representation of information by means of a digital signal.
(see IEV 101-12-07)

The  table  shows  the  classification  of  the  examples  (1)-(12)  mentioned in  Section  2  according  to  these
definitions:

IEV CLASSIFICATION classified cases problematic cases

allowed as non-injectivity of the coding function, a generalized concept of  weak coding system would be possibly
obtained, whose exploration is outside the scope of this paper.
 This is consistent with the well-known characterization proposed by Bateson (1979) “All receipt of information is
necessarily the receipt of news of difference” (p.29). More formally, the definition of information entropy by Shannon
(1948)  shows that  for  a  source  to  convey  information  at  least  two objects,  such  that  their  probabilities  of  being
communicated is positive, must be present.
 For a more analytical presentation see also Allen & Mills (2004, Chapter 1).
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analog representation (6), (8), (10) none

digital representation (1), (2), (3), (4), (5), (7), (9), (11), (12)

In  most  cases  the  classification  following  from  IEV  definitions  is  in  agreement  with  the  intuitive
classification  introduced  above.  The  cases  that  are  not  in  agreement  are  those  in  which,  although  the
representing signals  and  the represented objects  covary, signals  are  not  continuous.  Indeed,  in  case  (5)
(representation of time by means of sand-glass) and in case (11) (representation of a quantity by means of a
diagram on a PC) the representations have no constraints but covariance, yet signals are clearly discrete.
One might expect that philosophical theories of the A/D distinction built on the opposition between discrete
and continuous signals would be consistent with the IEV. As we will see in the following section, this is not
the case.

4.1.Positions centered on the continuous vs discrete opposition
Let us consider first the positions according to which the continuous vs discrete opposition is crucial in order
to understand the A/D distinction.

4.1.1. Goodman’s account
According to Goodman (1968), the A/D distinction is outlined by the following definitions.

Goodman’s definition of analog: a system is analog if syntactically and semantically dense (p. 160), where a
system is (1) syntactically dense if it consists of an infinite set of ordered symbols such that for each pair of
symbols a and b such that a<b, where < is the order defined on the system, there is a symbol c in the set such
that  a<c<b,  and (2) semantically dense if it consists of an infinite set of ordered symbols, each symbol
denotes a class of objects, and the denoted classes are in their turn infinite and ordered, so that for each pair
of such classes there is a third class included between them with respect to the given order.

Goodman’s definition of digital: a system is digital if it is syntactically and semantically discontinuous and
differentiated, where a system is: (1.1) is syntactically discontinuous if it is not syntactically dense; (1.2.)
syntactically differentiated if it is always theoretically possible to determine whether a given token belongs
to a given symbol type; (2.1) semantically discontinuous if it is not semantically dense; (2.2) semantically
differentiated if it is always possible to determine whether a given token belongs to a given type.

The A/D distinction,  as  characterized  by Goodman,  can be straightforwardly  expressed in  terms of  the
process of information acquisition and encoding, as introduced in Section 2: in an analog system the types of
symbols   are densely ordered, while in a digital one they are not. Accordingly, in digital systems it is
possible to determine of which object of   a token of  O2 is an instance, whereas in analog systems this
possibility is not assured. Furthermore,  represents the semantic level of the objects used in the encoding,
i.e., it contains the entities denoted by such classes. Again, a system is analog only if the objects of  are
densely ordered, while in a digital system they are not. As a consequence, Goodman argues that analog and
digital systems have nothing special to do with digits (or numerals) and analogy respectively. As we shall see
in Section 5.3, we agree with Goodman on the first point but not on the second one, since, more generally,
we disagree with the views which identify continuous with analog and discrete with digital.

4.1.2. Some problems in Goodman’s account

 An example of a system that is analog according to this definition is an ideal dynamometer, whose indicating needle
changes position as the applied force changes. Indeed, for each pair of positions of the needle there is, in principle, an
intermediate position that  the needle can assume, and, if  classes of objects having the same weight are taken into
account,  then  for  each  pair  of  such  classes  of  objects  there  is  a  third  class  of  objects  of  intermediate  weight
corresponding to such an intermediate position.
 An example of a system that is digital according to this definition is a device that reports the numbers of coins that
have been inserted in it after the last reset, the count being expressed by a sequence of characters so that, e.g., “***”
stands for ‘three coins’. Indeed, the characters are syntactically discontinuous and differentiated and every set of coins
is distinguishable from the others.
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The examples of Section 2 are classified as follows according to Goodman.

GOODMAN CLASSIFICATION classified cases problematic cases

analog representation (3), (4), (6), (8), (10) (5), (7), (9), (11), (12)

digital representation (1), (2)

A problem of Goodman’s analysis is the incompleteness of the classification following from his criteria:
assuming a dense order on and  in the analog representation and a non-dense order in the digital one, he
excludes the cases in which only one of sets is densely ordered from his classification. Consider the example
(7) (representation of time by means of a watch with digits). While instants of time are customarily supposed
to be densely ordered, watch digits are not so ordered. Therefore, in this case, is densely ordered, while
is  not,  with the consequence that  this  example is  neither  analog nor  digital  according to Goodman’s
definition. Similar remarks apply to examples (5), (9), (11) e (12): Goodman’s criteria are in contrast with
Desideratum 1.  Moreover, another consequence of Goodman’s account is that examples (3) and (4) (the
representations of rational numbers by means of positional and fractional systems) are classified as analog,
given  that  both  the  representing  and  the  represented  systems  can  be  densely  ordered.  However,  the
preliminary classification, IEV and most of proposed classifications regard these cases as digital: Goodman’s
criteria are in contrast also with Desideratum 2.
Finally, despite the negation explicitly stated by Goodman, his position assumes both a potentially infinite
resolution of the indicating instruments and observations, to guarantee the condition of syntactical density,
and a potentially infinitesimal variability of the property under consideration, to guarantee the condition of
semantic density. This implies that analog systems cannot be based on indicating instruments of discrete
resolution nor on discretely varying properties. While the issue of the continuity or discreteness of properties
is a matter of physics, and thus outside the present analysis, the very concept of infinite resolution for a
technological device is critical: endorsing it as a necessary condition for a system to be analog leads to the
conclusion that, strictly speaking, no empirical system can be actually analog.

4.1.3. Haugeland’s account
Haugeland (1981) suggests that continuity and discreteness are primarily relevant as properties not of the
representation support, as supposed by Goodman, but of the instancing (i.e., writing and reading) process on
the support.  Thus, although water is considered continuous according to macroscopic physical models, a
given amount of water can be exploited as a discrete support to convey information.  On the other hand,
even if sand is considered as discrete, a given amount of sand can be dealt with as a continuous support.  On
this basis, Haugeland believes that the A/D distinction concerns the procedures of writing and reading tokens
of various types, i.e., “the procedures for producing tokens, given the types that they are supposed to be, and
the procedures for telling and determining the types of given tokens”: these procedures succeed without
margin for error in the case of digital devices but do not offer similar guarantee in the case of analog devices.
Accordingly, the definitions given by Haugeland are the following.

Haugeland’s definition of digital: a device is digital if the process it exploits for writing and reading tokens
of a given type can be guaranteed to be positive  and reliable,  where such a process (i)  is positive if it
certainly succeeds, i.e., its writing/reading results can be unambiguously assessed, and (ii) is reliable if it
always succeeds, provided that the process itself is performed under appropriate conditions.

Haugeland’s definition of analog: a device is analog if the process it exploits for writing and reading tokens
of a given type cannot be guaranteed to be positive and reliable,  i.e.,  only approximated results can be
obtained from it.

 Consider, for example, a system using a supply of water and a supply of beakers. Water is poured into the beakers in
equivalently-sized increments, such that each beaker contains between zero and nine increments of water. There is a
one-to-one function associating beakers with the numbers zero through nine, such that the amount of water in a beaker
determines the number with which that beaker is associated (cfr. Katz (2008), p. 404). In this case water is used as a
discrete support.
 Consider, for example, how sand is exploited in hourglasses in order to measure time intervals.
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A customary origin of the unavoidable errors that cause the approximation to which Haugeland refers is the
adoption of sets of tokens that are dense in the Goodman sense. If such tokens are not “sufficiently distinct”,
so that between each pair of tokens there is a third one that could not be operatively distinguishable from
either of them, the attribution of a token to a given type can indeed be only approximately obtained. If
Goodman’s and Haugeland’s accounts  of  the  A/D distinction are in this  sense similar, some differences
remain between their positions. According to Haugeland, the distinction relates to the process of writing and
reading tokens, not to the structure of the set of tokens. Therefore, for example, a device that might produce a
very large range of electrical tensions but that in fact is designed to generate only signals close to 0 V or to 5
V, i.e., two “sufficiently distinct” sets of signals, would be considered digital by Haugeland because, under
suitable conditions, a positive and reliable decoding process operating on such tensions is available. On the
other hand, Goodman would characterize it as analog since there is no clear-cut distinction between the two
types, so that,  for  example,  an ambiguity remains on the type corresponding to a 2.5 V tension, that is
physically possible. Hence, according to Haugeland, the A/D distinction relates to the relation between the
sets   and  O2, as realized by the writing and reading process. Since, against the Goodman’s hypothesis,
Haugeland does not introduce any condition on , his position is a purely syntactic one, involving only the
relations between types and tokens.
Katz (2008) takes up a position very similar to Haugeland’s. While agreeing that in digital systems tokens
are sufficiently far from one another to prevent misreadings, he stresses that such a concept of sufficiency is
of a pragmatic nature, as it should be characterized relatively to users and their goals.

4.1.4. Some problems in Haugeland’s account
The examples of Section 2 are classified as follows according to Haugeland.

HAUGELAND CLASSIFICATION classified cases problematic cases

analog representation (6), (8), (10) (5), (11)

digital representation (1), (2), (3), (4), (7), (9), (12)

Haugeland’s accounts is consistent both with the preliminary classification and with IEV. Only two problems
remain. First, examples (5) and (11) are problematic because it is not clear how Haugeland would consider
them: when sand glasses and histograms on a PC are concerned, it may be asked if the system that writes and
read tokens is the human agent using sand glasses and PCs or not. PCs discriminate between two histograms
even if they differ for one pixel only, but human eye might not. The two systems allow a reliable reading in
principle, but this is not their typical use. Second, Haugeland does not seem to account for the condition of
being based on, or related to, an analogy, i.e., the resemblance between signs and represented objects, of
analog systems. The following examples illustrate this issue.

Example 1: In some watches the minute hand does not move continuously, but jumps to the next notch each
minute. Hence, the display has 60 discrete states. However, this does not change the common understanding
that these watches are analog systems. On the other hand, according to Haugeland’s criteria they should be
considered digital,  because the classes derived from them (i.e.,  the angular position of the hand at  each
instant of time) can be positively and reliably ascribed to such classes.

Example 2: In the dashboard of some vehicles, the fuel level is displayed by means of a sequence of LEDs
(i.e.,  on/off  light  elements),  such that  when the tank is  full  all  elements  are on,  and the number of  on
elements decreases as the tank empties. Despite the usage of an array of bistable entities,  this system is
similar to the one of the previous example and therefore it could be considered analog. Yet it encodes the
information regarding the fuel level as discrete.

Example 3: Blachowicz (1997) argues about a slide rule whose cursor can only be located at certain points of
the basic scale (there could be click-stops for such alignments). Slide rules are prototypical analog devices,
and such a device would still function as a slide rule. Nevertheless, the cursor could only be in a finite
number of discrete positions.
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These examples share a feature: there is a covariance between the signs and what the signs represent and
there is no further constraint on the signs themselves. In particular, the representation system makes use of
discrete signs sufficiently distinct with each other to make the reading and writing processes positive and
reliable. To sum up, the Haugeland’s account is interesting and the classification it engenders is sufficiently
intuitive, but still it does not satisfactorily covers all aspects of the A/D distinction. An alternative account
might fare better if and only if (1) it is more intuitive and (2) is able to explain why Haugeland’s view
succeeds in the cases above. We will see that our proposal meets both these requisites.

4.2.Positions not centered on the continuous vs discrete opposition
Let us consider now the positions according to which the continuous vs discrete opposition is not crucial in
order to understand the A/D distinction.

4.2.1. Lewis’ account
Lewis (1971) is well aware that Goodman’s hypothesis is problematic because there are many non-dense and
differentiated representations which, however, are considered to be analog. For example, an integer number
n can be represented by a sequence of 1   electrical resistors connected in series in a circuit in which a
switch allows the connection of exactly  n of them, thus obtaining an equivalent resistance of  n  . Lewis
maintains that the A/D distinction is related to the physical quantity (he uses “magnitude”) chosen as the
representation means: if it is a “primitive or almost primitive” quantity, then the representation is analog; if,
on the other hand, such a quantity is defined as a function of other (primitive or non-primitive) quantities,
then the representation is digital. In addition, whether a quantity is primitive or not depends, according to
Lewis, on the current state of knowledge of physics. In the example above, the representation of integer
numbers  by means of  the  given set  of  resistances  is  analog because a  primitive quantity, the  electrical
resistance, is directly exploited to represent such numbers.
Let us consider, instead, a device constituted of several electric circuits, each of them with a resistance of
either 5  or 1 . Let the circuits be independent and ordered according to an index i from 0 to n, all of them
being connected to  an output  component  that  computes  the  number   mi 2i,  where  mi is  either  0  or  1
depending on the resistance of the i-th circuit: in particular, if the resistance of the i-th circuit is 1 ., then mi

is 0, if the resistance is 5 ., then mi is 1. For example, to represent the number 6, three independent circuits
are required, numbered 0, 1 and 2. The circuit 0 must have resistance 1 , the circuits 1 and 2 resistance 5 .
The represented number is 020 + 121 + 122 = 6, thus a realization of the familiar binary system. In this case,
the representation is digital, as it is the function of many differentiated primitive physical quantities, i.e., the
resistances of different independent circuits.
Hence, Lewis claims that the A/D distinction concerns the relations between the sets  and  in a coding
system. If the elements of  are quantities obtained from the same determinable primitive property, and each
of them directly represents an element of , then the system is analog. On the contrary, if the represented
elements depend on several elements of , each of them obtained from one or more determinable properties,
then the system is digital.

4.2.2. Some problems in Lewis’ proposal
In Section 5 we will also argue that the A/D distinction relates to coding systems, i.e., to the relation between
the sets   and  .  Therefore,  we consider the Lewis’ hypothesis to be an important  improvement with
respect to other positions because it identifies the right point where the matter must be settled. However,
Lewis’ proposal raises some critical issues.
The examples of Section 2 are classified as follows according to Lewis.

LEWIS CLASSIFICATION classified cases non classified cases

analog representation (5), (6), (8), (10), (11) (1), (2), (3), (4), (7), (12)

digital representation (9)

Lewis seems to consider only the case in which numbers are represented by physical quantities, whereas the
scope of the A/D distinction is much wider, as it could be generally related to information coding strategies.
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As an example, the number 5 may be represented by the numeral “5” and then  instantiated by means of
properly shaped ink spots on paper, but this can hardly be considered a case in which a number is represented
by a physical quantity. Lewis’ account does not satisfy the Desideratum 1 because examples (1), (2), (3), (4),
(7) remain unclassified. In all these cases a number is represented by a numeral system. For the same reason
numerical tables can hardly be considered a physical quantity and therefore also example (12) is not covered
by Lewis’ proposal. Second, Lewis claims that analog systems represent information by means of “primitive
or  almost  primitive”  quantities,  while  digital  ones  do  so  by  the  concurrence  of  several  differentiated
quantities. As already noted by Haugeland, this does not seem to be the case. An analog signal might be
obtained by combining two different quantities, for example, positions of a pointer with sounds. It could be
the case of an alarm signal operating so that when a pointer reaches successive given positions, higher and
higher pitched sounds are emitted. The fact that two different quantities are involved in this signal does not
make it digital.

4.2.3. Maley’s account
Maley (2011) has refined Lewis’ hypothesis. According to him, “analog representation is representation in
which the represented quantity covaries with the representational medium, regardless of whether the medium
is  continuous  or  discrete.  This  is  similar  to  Lewis’ definition of  analog representation,  but  without  the
requirement that the medium of representation be ‘primitive or almost primitive’” (p. 6). His claim can be
interpreted within the framework introduced in Section 2.

Maley’s definition of analog: A representation fC is analog if and only if (i) 1 and 2 are sets of quantities, on
which additive operations ●1 and ●2 are defined respectively, and (ii) fC : 1  2 is such that for every two
sorts 1, 2  1, 1 ●1 2 = 3 if and only if fC(1) ●2 fC(2) = fC(3), i.e., fC is a homomorphism from (1,●1)
to (2,●2).

As  to  digital,  Maley  maintains  that  “digital  representation  is  the  scheme we normally  use  to  represent
numbers. More explicitly, it is the representation of a number consisting of: a series of digits, where digit just
means a numeral in a specific place; and a base, which is used to interpret the relative value of digits” (p. 8).
This characterization can be reformulated as in the following definition.

Maley’s definition of digital A representation is digital if and only if (i) 1 is a set of numbers and 2 is a set
of numerals and (ii) the elements of 2 have the form dndn–1…d0, where dn, …, d0 are digits, and, given a base
b, they are interpreted as representing the number (dn  bn) + (dn–1  bn–1) +… + (d0  b0).

According to Maley, in analog representations the represented elements 1 are quantities, whereas in digital
representations they are numbers. Hence, if Maley is right, the A/D distinction does not concern only the
coding function from 1 to 2, but also the kinds of the represented things, i.e., the kinds of elements which
are members of 1.

4.2.4. Some problems in Maley’s account
The examples of Section 2 are classified as follows according to Maley.

MALEY CLASSIFICATION classified cases non classified cases

analog representation (5), (6), (8), (10), (11) (2), (3), (4), (9), (12)

digital representation (1), (7)?

 An anonymous referee noted that the definition of ‘analog’ at p. 123 of Maley (2011) deals with the representation of
numbers, not quantities. This is true, but some lines below Maley writes of “the quantity to be represented” and some
lines further of the representation of the “degrees of rotation”, which is a quantity and not a number. Moreover in the
footnote 2 of the same page Maley considers “a representation of earthquake intensity using the logarithmic Richter
scale” as an example of analog representation. In general, Maley regards an analog representation as a “representation
in which the represented quantity covaries with the representational medium” (p.122), indicating that Maley is thinking
of a morphism between two sets of quantities.
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Maley himself (p. 123, note 2) acknowledges that his definition of analog representation could be too strict:
“It may be that requiring the function to be linear it is too strong: perhaps monotonicity would suffice. For
example, a representation of earthquake intensity using logarithmic Richter scale might be a candidate for an
analog representation”. Hence, it seems to be appropriate to remove the condition that ● 1 and ●2 must be
additive from the definition of analog, and simply require that there must be a morphism from 1 to 2, that,
for example, preserves the order between the involved quantities. So emended, the Maley’s classification
agrees entirely with the preliminary classification of analog cases. However, his characterization of digital
representation  is  more  problematic.  The  condition  (i)  of  the  definition  of  digital  prescribes  that  the
represented entities of a digital device can only be numbers. At face value, this seems to be at odds with the
fact that texts, music, video, and so on can be digitally encoded. Maley deals with the problem by stating (p.
125, note 6) that, although in his view it is true that a digital representation can represent only numbers, “the
numbers represented can represent other things, such as characters, pixel values, or the time in the case of a
digital clock”. A problem undermines this thesis. While the states of bistable supports can be interpreted as
the numbers 1 and 0, this interpretation is not compelling at all, as the states of a bistable support might be
represented, e.g., as + and –, or  and , and there is nothing in the nature of the states forcing them to be
mapped on numbers. Just as an example, let us consider the representation of the color of a pixel by means of
the states of a bistable support. To simplify matters, suppose that the pixel can only have three colors, e.g., (a
certain shade of ) red, green and blue. Let the coding function be:

g : <red, >, <green, >, <blue, >

Maley  would  say  that  g is  not  the  actual  coding  function.  Rather,  the  colors  that  pixels  can  take  are
associated with numbers, e.g., 0, 1 and 2, and then these numbers are in turn associated with the states ,
, . But this reference to numbers adds nothing to the function g, which can be directly thought of as
expressing the code of the system. Since in g 2 is not a set of numerals, but simply the set of the possible
states of a support, and  is not a set of numbers, but a set of colors, the conditions (i) of the definition of
digital seems to be too strict. More generally, in modern digital computers the bistable support can represent
a set of numerals, but need not. That digital computers are digital only when they represent numbers seems
to be an implausible consequence of Maley’s view. If condition (i) is not correct, also condition (ii) falls
away.  Pace  Maley, his view does not cover the example (9) of Section 2 (the representation of music by
means of CDs) because the process of encoding music in CD pits and lands need not use numbers.
Another  problem for  Maley’s account  is  that  his  definition  of  digital  covers  only  a  restricted  class  of
numerical  representations.  For  instance,  the  representation  of  integer  positive  and  negative  numbers
(example  2)  is  not  fully  positional  and  therefore  is  not,  strictly  speaking,  digital  according  to  Maley’s
definition. This is also true of examples (3) (positional representation of rational numbers) and, especially,
(4) (fractional representation of rational numbers). Similar remarks apply to the representation of a quantity
by means of tables (example 12). As a consequence, Maley’s view does not satisfies Desideratum 1, so that
some improvements of his account are needed.

 Another scholar who dissents from the mainstream tradition and the common understanding is Blachowicz (1997). He
denies  the  equivalences  digital=discrete  and  analog=continuous,  and  suggests  that  the  A/D  distinction  should  be
accounted for in a different way. He states that, in a digital system, a symbol stands for a type, while in an analog
system the representation and the represented object are tokens of the same type. While this characterization implies
that in an analog system the representation and the represented object have some sort of structural resemblance (which
is one of our claims), the hypothesis that the type/token distinction can be the basis for the A/D distinction is critical. In
fact, as shown in Section 2.1, the coding function always maps types into types and, as we shall see, this is true both for
analog and digital representation.
Some of these remarks apply also to the characterization of Dretske (1981). He thinks that a signal is digital if it does
not carry more information than required by the aims of the system, analog if it carries more specific information than
required. For instance, suppose that the aim of a system is to activate a brake when a vehicle exceeds 70 km/h.; the
system is made up of a speedometer capable of registering the vehicle speed and a converter which generates a signal
when the registered speed exceeds 70 km/h. Dretske claims that the speedometer carries analog information because it
is more specific than required by the system (the only important thing is whether the speed exceeds or 70 km/h or not; it
is not important whether the speed is 56 or 57 km/h), while the signal carries digital information. In converting the
information from the analog to the digital format there is a loss that, however, is compensated by the fact that the digital
signal provides a classification of the significant ranges of the input variable: every speed under 70 km/h is collected in
one class and every speed over 70 km/h in another class. But, again, every coding function maps tokens into types: the
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5. A new characterization of the A/D distinction
The characterization we are proposing of the A/D distinction is focused on the coding function and originates
from the observation that a basic condition must be fulfilled for a coding system to be useful. Whenever
encoding and decoding are performed by different entities, either living beings or technological devices, the
coding  function  ƒC:12 must  be  completely  and  unambiguously  communicable,  and  actually
communicated, to the decoding entity, that is required to compute the function ƒC

1. This makes the explicit
definition of ƒC a critical aspect of the whole process of conveying information.

5.1. Intensional vs extensional definitions as coding strategies
It is well known that two general strategies are available to define a set, and therefore specifically a function
ƒ:AB thought of as the subset of the set AB of the ordered pairs a,b such that b=f(a). Indeed, a coding
function f can be defined:
– by listing a set of conditions on 12 that are necessary and sufficient to determine whether 2 = fC(1) for
any ordered pair 1,2; this is called an intensional definition;
–  by  listing  the  set  of  all  the  ordered  pairs  1,2 such  that  2  =  fC(1);  this  is  called  an  extensional
definition.

Before analyzing these strategies and comparing them in their features and applicability to coding systems,
let  us  introduce  a  simple  example.  A teacher  needs  to  communicate  the  marks,  let  us  suppose  integer
numbers in the range 1={1,2,...,10}, that some students achieved in an examination. Aiming at making the
students  aware of  the  complexities  of  the  process  of  conveying information,  the  teacher  decides  not  to
perform  the  task  by  the  customary,  verbal  or  written,  means  of  communication.  Instead,  she  adopts
alternatively two exemplary, although peculiar, solutions for communicating the marks 1:

Solution 1: the teacher encodes each mark 1 by means of a proportional amount of water, say k1 for a given
k>0 (hence, 2 = f(1) = k1; for the sake of simplicity measurement units are omitted) (the writing process);
by receiving a given amount of water (the transmission process), each student obtains the quantity value 2

by means of measurement (the reading process) and finally he ascertains the assigned mark by decoding
such quantity value, i.e., by computing f 1(2) = 2/k;

Solution  2:  the  teacher  encodes  each  mark  1 by  means  of  a  distinct  shape  2,  thus  assuming  the
correspondences mark 1 ↔ shape 1, mark 2 ↔ shape 2, …, (the writing process); by receiving a given object
(the transmission process), each student recognizes its shape (the reading process) and finally he ascertains
the assigned mark by decoding the shape, i.e., by computing f 1(2).

It is easy to prove that both solutions satisfy the three conditions that define a coding system 1,2,ƒC:
i) 1 is the range of a classification function, in this case a map from examination tests to marks;

speedometer is not an exception because it maps every speed in some class (the class of 1 km/h, the class of 2 km/h,
etc.).  Furthermore,  it  is  hard to see how an analog clock,  a  paradigmatic example of  analog device,  carries  more
information than required by the aim of the system. Actually, it is not even clear whether Dretske wishes to provide a
new characterization of the common A/D distinction or to put forward a definition of a different distinction: he says that
he is using “the familiar terminology – analog vs digital – in a slightly unorthodox way” (p. 137).
 This clear-cut characterization hides some subtle issues that, although not specifically critical for our analysis, can be
mentioned. The listing of the pairs a,b, i.e., the extensional definition of the function, is achievable in two different
ways: 1) by explicitly listing, for each pair, both the first and the second element; 2) by explicitly listing, for each pair,
only the second element, and then giving a property which the elements of the domain of the function are to satisfy in
order to be mapped to an element in the list. Whereas the first way is only possible when the function domain is finite,
the second way is also possible when the domain is infinite. An example of the first form of the definition is: b=f(a) if
and only if (a=1 and b=1) or (a=2 and b=2) or (a=3 and b=1) or (a=4 and b=2). An example of the second form is:
b=f(a) if and only if (a is odd and  b=1) or (a is even and  b=2). Moreover, the intensional strategy is the only one
available when the image of the function is an infinite set, while the extensional strategy is the only one available when
the image of the function is an extensionally defined set and the function is one to one.
 Of course the student must be able to discriminate between the different possible quantities of water he can receive. In
particular, he must be equipped with an instrument  able to  distinguish  k n of  water  from  k (n + 1)  of the same
substance.
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ii) 2 is a set of instantiable objects, in this case either given amounts of water (Solution 1) or given shapes of
objects (Solution 2);
iii) ƒC is bijective.
Hence,  provided  that  students  are  informed of  the  adopted coding  function,  in  principle  both solutions
produce correct results, i.e., are able to convey unambiguous information. Yet, such solutions are structurally
different, as they imply:
– the intensional definition of the coding function in Solution 1;
– the extensional definition of the coding function in Solution 2.
This gives a hint on the general strategies for the communication of a coding system to receivers (students in
this case), and shows the greater efficiency of Solution 1, which exploits a single parametric expression such
as 2 = k1, compared to Solution 2, which instead requires the function to be expressed as a list of instances
of the same pattern: mark  ↔ shape 2.
To further emphasize the different features of the two solutions, a second issue can be taken into account:
what changes are required in the coding system if the set of objects to be represented is extended, e.g., to
include  not  only  integer,  but  also  fractional  marks  as  ½,  1½,  2½,  etc.?  Whenever  the  capability  to
discriminate  between  given  amounts  of  water  (i.e.,  the  resolution  of  the  involved  writing  and  reading
devices, in this case controlled by the value of the multiplicative factor k) remains sufficient, Solution 1 can
be maintained without any change. On the other hand, Solution 2 requires the introduction of new shapes and
correspondingly the extension of the coding function. Therefore, also from this point of view, Solution 1
appears to be more efficient than Solution 2.
At this stage of the analysis, one could assume Solution 1 and Solution 2 to be representative of that which
could be called “continuous coding” and “discrete coding” respectively. To explore the soundness of this
hypothesis, and to show that it is in fact wrong, let us introduce a third possible solution to the problem
presented in the example. For communicating the marks:

Solution 3: the teacher encodes each mark  1 by means of a proportional number of empirically identical
objects (e.g., pebbles), say  k1 for a given integer  k>0 (hence  2  = fC(1) =  k1) (the writing process); by
receiving a given number of pebbles (the transmission process), each student obtains the quantity value 2 by
counting (the reading process) and finally he ascertains the assigned mark by decoding such quantity value,
i.e., by computing fC 1(2) = 2/k.

With respect to both the issues of communicating the coding system and changing it to extend the set of
objects to be represented, Solution 3 appears to be structurally similar to Solution 1 as far as the factor k is
chosen so to avoid the loss of resolution due to the coarse quantization of the support adopted in the case of
Solution 3 (e.g., at least  k=2 if the elements of the set {½,1,1½,2,...,10} must be represented). This shows
that the difference between Solution 1 and Solution 2 is not related to the only apparent fact that the former
adopts a continuous coding and the latter a discrete one. Indeed, despite its structural identity to Solution 1,
Solution 3 adopts a paradigmatically discrete support. What is relevant here is not the continuous vs discrete
distinction, but the strategy adopted to define the coding system: according to an intensional definition in the
case of Solutions 1 and 3, and according to an extensional definition in the case of Solution 2.
The greater efficiency of Solutions 1 and 3 compared to Solution 2 also appears in the fact that the former
can be applied even when the cardinality of the set of objects to be encoded is not known in advance (with
the only condition, as stated above, on the resolution of the coding function), whereas the latter requires such
set to be finite and extensionally known.
As a partial conclusion, the strategy based on intensional definitions has several advantages compared to the
one based on extensional definitions. On the other hand, the former is not unconditionally the best one, as the
intensional definition of a coding function implies the presence of a structure on the function domain, a
requirement that can be avoided in the case of extensional definitions. This condition is so important for our
analysis that it is worth some further consideration.

5.2.Structures as facilities, structures as constraints
As already pointed out, the intensional definition of a function ƒ:AB consists of a set of conditions that are
necessary and sufficient to identify the value  f(a)B for any argument  aA. Such conditions can only be
expressed if the function domain A is equipped with a structure to be exploited in the definition itself. For
example, if A is linearly ordered then a function could be intensionally defined as “for a given element a’A,
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map all x<a’ to  a’ to 1/2 and all xa’ to 1”. This example also shows that intensional definitions generally
do not impose a structure on the function range (consider reformulating the three cases by mapping to, e.g.,
“Paris”, “London”, and “Rome”). On the other hand, the functions taken into account here are part of a
coding system, and therefore they must be bijective. It should be obvious that the intensional definition of a
bijective function implies the presence of a structure also on the function range: since the number of atomic
conditions in the definition must be less than the cardinality of the function domain, and the cardinality of the
function domain and range is the same because of the bijectivity, then the conditions must be able to identify
subsets of the range, a situation that is possible only in the presence of a structure on the range itself. Hence,
the intensional definition of a coding system 1,2,ƒCimplies that both the domain 1 and the range 2 of
the coding function fC are equipped with a structure. This introduces a further constraint: since, by definition,
the elements of  2 must be instantiable, i.e., there exists a set  O2 of empirical objects such that they are
tokens whose types are the objects of 2, a coding system is intensionally definable only if the set O2/≈ of the
classes of ≈-equivalence of such tokens is, in its turn, equipped with a structure that makes it isomorphic to
2, being ≈ the relation of empirical indistinguishability in the writing/reading process. This is easily verified,
in particular, in the case of Solutions 1 and 3 above: the classes of equivalent amounts of water and of
equivalent  numbers  of  pebbles  are  linearly  ordered  by  the  empirically  assessable  relations  of   ‘greater
amount’ and ‘greater numerousness’. On the contrary, the tokens adopted in Solution 2 do not fulfill this
constraint (no ordering among the shapes need to be determined), that, however, is not mandatory since in
this case the definition of the coding system is extensional.
The following table synthesizes the conclusions reached so far, by comparing two strategies of definition of
coding systems in terms of four criteria.

Criterion 1: how to 
define/communicate 
1,2,ƒC?

Criterion 2: how to 
extend 1,2,ƒC ?

Criterion 3: must 1 
have a structure?

Criterion 4: must O2/≈ 
have a structure making 
it isomorphic to 2 ?

Intensional 
definitions

by a parametric 
expression

(nothing required) yes yes

Extensional 
definitions

by a list of instances of 
the same pattern

by explicitly listing the 
new instances

no no

As the  last  step of  our  analysis,  let  us  point  out  that  intensional  definitions  of  coding  systems can  be
classified into two general categories, depending on whether the coding function fC preserves the structure
defined on its domain or not. In the former case, for each relation R on 1 (let us consider binary relations
for the sake of simplicity) there is a relation R on 2 such that R(1,i, 1,j) if and only if R(fC(1,i), f(1,j)).
Hence,  fC is  an isomorphism between  1 and  2.  On the other hand,  coding functions are not  generally
constrained  to  preserve  the  structure  defined  on  their  domain.  As  a  simple  example,  given  1  =  2  =
{0,1,...,n1} for n>1, let us consider the function f(i) = i+1 mod n, i.e., in the case n=3, the function f(0)=1,
f(1)=2, f(2)=0. Of course, this function is (defined in intensional way and is) bijective but does not preserve
the ordering on the natural numbers, i.e., in this sense it is not an isomorphism on {0,1,..., n1} into itself.
This shows that, in general, three strategies to define coding systems are available:
– extensional;
– isomorphic intensional;
– non-isomorphic intensional1.

 Another example is the following function: f(n) = n +1 if n is even and n -1 if n is odd, where n is a natural number.
This function maps every even number on an odd number and every odd number on an even number. It is bijective, but
it does not preserve the ordered structure of natural numbers.
1 An anonymous referee has drawn our attention to the classification provided by (Cummins 1996) and (Cummins et al.
2001) with respect to the way in which structured domains can be informatively represented. Cummins et al. introduce
two basic distinctions: a distinction between structural and non-structural representations, where a representation is
structural when it represents items in its target domain in virtue of sharing structure with the things it represents, and a
distinction between systematic  and non-systematic  representations,  where a  representation is systematic  when it  is
associated with a systematic recovery function, i.e. an intensional procedure that allows one to recover information
about the target domain by systematically mapping the representation items to the domain items. Since every structural
representation is systematic, we get three kinds of representations: (1) structural & systematic representations; (2) non-
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5.3.Analog and digital as features of coding systems
The reader can now easily guess the characterization of the A/D distinction we propose: ‘analog’ and ‘digital’
are strategies adopted to define coding systems, and:
– a coding function is analog if and only if it is defined in an isomorphic intensional way;
– a coding function is digital if and only if it is defined in an extensional way,
where  a  function  is  defined  in  an  extensional  way  when  its  definition  is  based  on  a  correspondence
determined by a list. The definitions of ‘analog’ and ‘digital’ become:

Definition A: analog = pertaining to the representation of information based on an isomorphic intensional
coding function.

Definition  D:  digital  =  pertaining  to  the  representation  of  information  based  on  an  extensional  coding
function.

As introduced above, Solution 2 is an example of digital coding: no structure is available on the given set of
shapes, so that the coding function can be defined only by the exhaustive (then unavoidably finite, hence, in
particular, discrete) listing of the ordered pairs represented class, representing type. Solutions 1 and 3 are
instead examples of analog coding: the structure available on the given sets of amounts of water / number of
pebbles is critically exploited in the isomorphic mapping of the represented class into the representing type.
This shows that being finite and discrete are necessary conditions of being digital, but they could be not
sufficient, as Solution 3 (discrete but analog) shows.

The  above  definitions  only  require  for  the  information  representation  to  be  based on  an  extensional  /
isomorphic intentional coding function. Indeed, in many cases, and typically when the set of entity to be
represented is both discrete and denumerable, the coding function is recursively defined. If the base case of a
recursive definition is given by specifying a list of pairs, then the coding function is to be still considered as
digital,  since there is  no similarity between the set  of  signs introduced by the definition and the set  of
designed  entities.  As  a  consequence,  the  representation  of  discrete  numerical  entities,  such  as  integer
numbers, dense numerical entities, such as rational numbers, and, in general, data types, turns out to be
digital.

structural & systematic representations, called systematic encodings; (3) non-structural & systematic representations,
called pure encodings. It is worth noting that, while pursuing a more general objective, being interested in capturing the
basic traits of representations in general, and not only of representations of information, Cummins et al. propose a
classification that seems to perfectly match with our classification. To be sure, it seems to us that the following one to
one correspondence is appropriate:
 
            structural & systematic representations  intensional isomorphic coding
            non-structural & systematic representations  intensional non-isomorphic coding
            non-structural & non-systematic representations  extensional coding
 
Such a correspondence is interesting in so much as it hints for the possibility of extending the present approach from the
domain of information representations to the wider domain of representations tout court.
 Analog coding is characterized by what O’Brien & Opie (2006) call “second order resemblance”. According to these
scholars first order resemblance concerns two or more objects sharing the same physical properties, e.g., the same mass.
Second order resemblance concerns two or more symbols (the authors speak of “representing vehicles”) having some
relations mirrored by the objects that symbols refer to. One of their examples is that of a mercury thermometer used to
represent temperature in virtue of the linear relationship between the length of a column of mercury and ambient
temperature. O’Brien and Opie claim that analog computers use symbols that have a second order resemblance with the
objects they refer to (p. 4). Moreover, they believe that one of the differences between classical computation systems
and connectionist systems is that the latter use representing vehicles showing structural resemblance with the domain
they represent. If this is correct, connectionist systems would be analog systems according to our definition and it would
be possible to characterize the difference between classical computation systems and connectionist systems in terms of
the A/D distinction. Thanks to an anonymous referee for drawing our attention to this paper.
 To illustrate,  let  us consider the coding function on which positional  systems are based. The very concept of a
positional system is grounded on a set of instructions: by an intensional rule it is easily and efficiently learned that the
numeral dn dn–1 ... d0, where each di is a digit (so that, e.g., in ‘314’ ‘3’=d2, ‘1’=d1, and ‘4’=d0), stands for the number di

bi, where b is the base of the adopted number system (hence, 3 .102 + 1.101 + 4.100, if b=10). In this sense, the positional
system is in fact  extensional in the coding function for the basic digits and intensional in the coding function for
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Remark. Some functions can be defined both intensionally and extensionally, and in particular, any finite,
intensionally defined function can be also defined extensionally. Thus,  some devices  can be considered
analog or digital depending on how the coding function they realize is defined. Indeed, it is the actual rule
that communicating agents use to encode and decode information that determines the nature of the code, so
that a device is analog or digital depending on the actual definition of the function the agents use to encode
pieces of information on the support. This does not seem to be a drawback. The A/D distinction concerns the
code used to link signs to their meanings: since a code exists only if there are some agents that use the code,
it is the actual code used by the agents which determines if a device is analog or digital.

The examples of Section 2 are classified as follows according to our account.

OUR CLASSIFICATION classified cases Non-classified cases

analog representation (5), (6), (8), (10), (11) none

digital representation (1), (2), (3), (4), (7), (9), (12) none

Our classification satisfies desideratum 1 because all cases are classified. In addition, our proposal conforms
to the preliminary classification and to the A1, A2, D1, D2 principles, also satisfying desideratum 2. In fact,
if the coding function is extensional, i.e., it is defined by explicitly listing pairs of elements, then the range of
the function has to be finite, and therefore discrete, otherwise the list could not be produced. Furthermore,
the only constraint to be fulfilled on the function range is that different elements of the domain are to be
associated to different elements in the range, so that the way in which the elements are associated to the signs
is wholly conventional. On the contrary, if the coding function is intensional, than the relevant structure of
the domain has to be preserved in the range. Hence, the relations between the elements of the domain have to
be mirrored by the relations between the elements of the range, so that the correlation between variations in
the domain and variation in the range follows. Therefore, this characterization is able to explain why the
coding systems, and the related devices, that are considered to be analog are indeed “analog”, as, according
to this interpretation, analog coding implies the existence of an analogy, actually an isomorphism, between
1 and 2 and, consequently, between types and tokens to be transmitted.

In addition, this characterization is also able to account for the advantages and drawbacks of either coding
strategy. When the cardinality of the set 1 of objects to be represented is high (a common situation in real
cases involving, e.g., audio or video information), analog coding is much simpler, whereas digital coding is

sequences of digits. However, since the base is extensional, it should be considered digital according to our definition.
Something similar seems to be at work in the case of languages. As formal languages are usually compositional, there is
an isomorphism between syntax and semantics: each time two symbols are linked together, the corresponding meanings
are composed, so that a complex meaning corresponds to the composition of symbols. This part of the coding function
can be considered intensional: there is an analogy between the complex signs and the complex meanings they encode
because the signs have the same structure as their meanings. The isomorphism between syntax and semantics of natural
languages is one of the basic assumptions of the so-called “Montague grammars” (see Montague (1974)). Anyway, in
such cases, the essential part of the definition of the coding function is given by the choice of the set of basic symbols:
the correspondence between basic symbols and numbers  is  conveyed by means of  a  list  and the number of  basic
symbols  determines  the  base  of  the  positional  system.  Again,  systems  such  these  are  regarded  as  digital  by  our
definition on the  ground of  the  extensional  nature  of  their  base.   Conversely, coding systems with an intensional
isomorphic base are also possible. Surprisingly, analog clocks are systems of this kind. Naturally, a morphism between
the angle covered by the hand and the time are exploited by analog clocks, but if two or more hands are present, there
are conventions that are not part of this morphic base. For instance, that the shorter hand (or the hand of a certain color)
indicates the hours while the other one the minutes is a piece of information not coded by the base. The coding function
<<shorter hand, hours>, <longer hand, minutes>> is not grounded on any isomorphism. However, since the base is
intensional, these clocks are analog systems.
 For example, vinyl audio records are analog devices because their configurations (sequences of depths of the groove)
are isomorphic to the acoustic power and frequency of the stored sound. On the contrary, there is no isomorphism
between the configurations of a digital device, such as the pits and lands of a CD, and the music recorded on it. Rather,
it is exactly the extensional coding system exploited to write and read CDs that makes them such versatile supports,
able to store not only music but also much less structured information such as texts, software, and so on.
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more flexible as it does not require the presence of any structure either in the information to be encoded or in
the adopted support. This suggests a simple and consistent interpretation to understand why digital is today
commonly preferred over analog, whereas practically all telecommunication systems were first designed and
implemented  on  the  basis  of  analog  coding  techniques  (an  exception  is  telegraph):  the  increasing
computational  power  and  memory  storage  capability  of  the  available  technological  devices  have
overshadowed the fact that digital processes require far more resources than comparable analog ones, thus
making the flexibility of digital coding cheaply and widely available.
Finally, let us consider how our characterization of the A/D distinction relates to the ones adopted by the
authors discussed above. On the one hand, it is not difficult to see that our account is in accordance with
them in classifying most of the central cases of A/D representation, even though the classification criteria are
different. This is due to the fact that most of the criteria adopted by the other authors, concerning either the
domain, or the codomain, or the implementation of the coding function, follow from our definition, which is
focused on the function itself. Thus, the discreteness of the domain and the possibility of having reliable
writing / reading processes are accounted by the fact that the coding function is extensionally defined, while
the  continuity  of  the  codomain  and  the  possibility  of  having  unreliable  writing/reading  processes  are
accounted by the fact that  the coding function is intensionally defined. Hence, the original  point  of  our
characterization, focused on the coding function, allows us to account for the success of the other ones in
classifying  most  of  the  paradigmatic  cases.  On  the  other  hand,  it  has  also  to  be  highlighted  what  our
characterization  implies  as  for  the  two  basic  distinctions  variously  exploited  by  the  other  authors  (i)
continuous / discrete and (ii) unreliable / reliable coding.
(i) As to the correspondence A/D  continuous/discrete, the conclusion is that while digital coding, which
requires  the  coding  function  to  be  defined  by  explicitly  listing  its  instances,  is  finite  and  therefore  in
particular discrete, at least in some cases also analog coding can be discrete.
(ii) As to the correspondence A/D  unreliable/reliable, our account implies that the reliability of encoding
and decoding processes, which is indeed a critical experimental feature, is in principle unrelated to the digital
strategy of coding. It is a correct observation that digital systems are usually more reliable than analog ones,
but this is an operative matter, relative to the way in which the coding function is implemented, not to the
way in which it is defined.

6. Conclusions
In this paper the A/D distinction has been referred to coding systems, which can be defined according to
either an intensional or an extensional strategy: under the hypothesis of isomorphic mapping the former is
analog, the latter digital. On the other hand, the condition for the encoded information to be instantiated
makes this interpretation relevant also to physical systems, thus accounting for the common understanding
that being analog or digital has something to do with such systems as far as they are adopted as support for
information. According to this characterization, both continuous and discrete supports can be used in analog
coding,  whereas digital  coding must  exploit  discrete supports because any extensional  definition can be
realized  only  on  finite  domains.  The  intuition  is  preserved  here  that  the  basic  character  of  analog
representations is constituted by the structural resemblance between what is represented and the representing
signs. As we have seen, our account satisfies the stated desiderata and gives some insights on the possibility
for analog devices of not being based on physical quantities and for digital devices of not being based on
numbers / numerals. In synthesis, the benefits of this proposal are at least that:

1) the A/D distinction turns out to be irreducible to the continuous / discrete one, and therefore its importance
is maintained and highlighted;

 It  is straightforward to show that reliability is  unrelated to our characterization of analog and digital coding. In
reference to the problem of communicating the marks that some students achieved in an examination, the reliability of
(analog) Solution 1, where the mark i is communicated by ki of water, depends on the factor k, and the greater k the
greater the reliability. On the other hand, the reliability of (digital) Solution 2, where the mark i is communicated by
the i-th shape, might be hindered by shapes that are insufficiently different with one another. Furthermore, in both cases
the reliability can be increased by replicating the transmission (the mark i is communicated by 2, or more generally n,
samples of ki of water; and by 2, or more generally n, objects of shape i), highlighting that the trade-off is between
reliability and amount of resources devoted in the transmission, not between reliability and A/D.
 This  point  constitutes  the  crucial  difference  between  our  position  and  Maley’s  one.  The  consideration  of  the
distinction between intensionally and extensionally defined function can be seen as the most intuitive way to generalize
Maley’s position so to cover the paradigmatic examples introduced in Section 2.
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2) the A/D distinction turns out to be a characterization of the strategies to represent information, and not of
the  kinds of  signals  or  supports  of  the  representation,  and  the conditions  that  make  analog and digital
representations possible are clearly identified;

3)  the  A/D distinction  turns  out  to  be  independent  of  the  current  physical  theories  concerning the fine
structure of the world.

Finally, the characterization criterion we have proposed, related to the way coding functions are defined and
communicated, leads to the unambiguous classification of representation strategies that includes both hybrid,
partly analog and partly digital, strategies, and a third coding strategy, neither analog nor digital, based on
non-isomorphic  intensional  mappings,  as  is  typical  of  cryptographic  codes,  a  case  of  “hidden
communication”.
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