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Abstract

Against the tradition, which has considered measurement able to produce pure data on physical systems, the
unavoidable role played by the modeling activity in measurement is increasingly acknowledged, in particular
with respect to the evaluation of measurement uncertainty. The paper characterizes measurement as a knowl-
edge-based process, and proposes a framework to understand the function of models in measurement and to
systematically analyze their influence in the production of measurement results and their interpretation. To
this aim, a general model of measurement is sketched, which gives the context to highlight the unavoidable,
although sometimes implicit, presence of models in measurement and finally to propose some remarks on the
relations between models and measurement uncertainty, complementarily classified as due to the idealization
implied in the models and their realization in the experimental setup.

1. Introduction

It is nowadays customarily admitted that models are in principle necessary tools to design measurement pro -
cesses, represent their results, and interpret the information they provide, particularly in assessing the quality
of such information as expressed by measurement uncertainty. On the other hand, modeling activities are of-
ten studied and developed as mainly concerning the definition of mathematical procedures for analyzing and
processing data, as in the significant case of uncertainty propagation, thus focusing these activities on the in-
formational, instead of the experimental, stages of the measurement process. In the scientific literature it is
indeed not frequent to find analyses of the way models contribute to the whole picture, by identifying the
specific stages of where models are plugged in and the role they play in introducing or increasing uncertain-
ties (a noteworthy exception is, e.g., [1] and [2]). Despite the epistemological connotation of the topic, some
contributions may be obtained by this analysis to the measurement practice by making the structure of the
modeling activity explicit and highlighting the significant points where models are implicitly at work.

This paper proposes an introduction to the subject: on the basis of a simplified model of the measurement
process, the elements of the process that are subject to the modeling activity are identified and classified. The
outcome of the analysis is twofold: first, the modeling activity reveals to be pervasive and influencing every
stage of the measurement process; second, the identification of the steps of such activity turns out to be a
useful tool to assess and classify the sources of measurement uncertainty. The paper is organized as follows.
In Section 2 an overview of the conceptual framework is provided, in which the problem of the connections
between measurement, models, and uncertainty is settled, also in a diachronic perspective. In particular, two
significant changes are underlined: (i) the move, in epistemology, from pure to modeled data, and (ii) the
move, in metrology, from an error-dependent conception of uncertainty to a model-dependent (i.e., informa-
tion-oriented, knowledge-based) one. In Section 3 a general model of measurement is sketched, which gives
in Section 4 the context for discussing the function of models in measurement. On this basis, in Section 5 we
propose some considerations on the relations between modeling and measurement uncertainty, thus empha-
sizing in particular how models are sources of uncertainties.

2. The emergence of models

Measurement has been traditionally considered a process able to produce pure data, i.e., data independent of
any interpretation, on physical systems. The basic idea underlying such conception is that physical systems
are characterized by physical quantities whose magnitudes do exist in themselves, being inherent features of
the systems. Aim of measurement is then to provide information about such magnitudes in the form of quan-
tity values. However, due to the complexity of the interaction with the physical world, measuring systems ac-
quire only approximate information on physical systems and the values they provide must be considered as
estimates of true quantity values, thought of as the values produced by ideal measuring systems operating in
the best measurement conditions, when all measurement errors have been removed. In this sense, “the uncer-
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tainty of the result of a measurement reflects the lack of exact knowledge of the value of the measurand” [3],
and as such it derives from the incompleteness of the available information concerning (i) the context in
which measurement is performed, including the quantities influencing the object under measurement and the
measuring system, and (ii) the accuracy (i.e., a superposition of precision and trueness), of the measuring
system [4]. Were such incompleteness removed, the measurand value would be completely known. The tradi-
tional concept of ideal measurement is then characterized as a process performed by means of a perfectly ac -
curate measuring system, operated according to a completely specified procedure, and coupled with the ob-
ject under measurement so to constitute a system which is closed or however perfectly known in its behavior.
A deep revision of this conception resulted from a general reflection about history and sociology of science,
not from measurement science. Since about fifty years, philosophers are highlighting that pure data do not
exist [5-10], as the information about the physical world is both acquired and interpreted in the light of mod-
els and hypotheses. It is not uncommon today to read statements such as “observations are never interpreted
independently of some abstract model of the physical system, analyses and calculations of results are done
on the model quantities which are supposed to correspond to the physical quantities.” [9, p.4]. The considera-
tion of the role of models in science was the novelty, which eventually has reached measurement science.
Such change is relatively recent, and is well witnessed by the shift in the meaning defined for the concept
‘measurement uncertainty’ in the International Vocabulary of Metrology, the so called VIM. In its first edi-
tion, 1984, measurement uncertainty was defined as “an estimate characterizing the range of values within
which the true value of a measurand lies” [11]. Less than twenty-five years after, in the current edition, 2008
(VIM3), the definition has become “non-negative parameter characterizing the dispersion of the quantity val -
ues being attributed to a measurand, based on the information used” [12]. The lexical choices are significant
here: quantity values are not determined but attributed, i.e., they are not assumed as inherently tied to the
measurand anymore, and such attribution is not based on truth (of values) but on information (on values)
[13].

The acknowledgment that uncertainty is part of measurement, and that through uncertainty the assumed qual-
ity of measurement results is stated, presents measurement as a knowledge-based process, where uncertainty
evaluation is a pivotal task, with a theoretical background [14] but critical operative implications: “the most
meaningful issue of a measurement practice is the estimation of uncertainty that must be associated with the
result of a measurement so that it can usefully be employed in any technical, commercial, or legal activity.”
[15]. Under the hypothesis that the measurand Y depends on n>1 quantities X; via a function f; a situation
sometimes called of indirect measurement, such task is customarily coped with by assuming that the infor-
mation on the “input quantities” X; is available as a vector m = (my, ..., m,) of measured quantity values and
their nxn covariance matrix M = (u;;). Hence, the problem is to propagate this information through f'so to ob-
tain the required information on Y. The basic solution assumes approximating f by linearization, i.e., as a
first-order Taylor series, so to make it possible to operate separately on the measured quantity values and
their uncertainties, by computing my = f{m, ..., m ,) and estimating its standard uncertainty uy as a function f
of M [3]. Despite the advantages due to this simplicity, and its connection with the traditional “error propaga-
tion”, this technique has some known drawbacks, mainly related to the approximation requirement itself and
the need to obtain the first partial derivatives of f, thus immediately implying its inapplicability whenever the
function has an analytical complex form, e.g., as an algorithm. The current scientific literature witnesses the
several research activities that have been devoted to generalize this framework and to overcome such draw -
backs, in particular for exploring alternative methods to compute the measured quantity value my when f'is
significantly nonlinear [16], computing my and uy via numerical techniques that do not require the lineariza-
tion of fand avoid computing its partial derivatives, such as the unscented transform [15], generalizing the
concept of measurement model and its formal treatment in the multivariate case, i.e., to vector measurands
[17]. The hypothesis of formalizing the available information on the input quantities in terms of probability
distributions, and not only some of their moments, has been supported, and the numerical propagation of
such distributions by means of Monte Carlo methods analyzed [18, 19]. Precisely the acknowledged rele-
vance of models has triggered the consideration of interpreting probabilities in measurement according to a
Bayesian approach [20, 21], as an alternative or complement to their traditional statistical understanding.
Furthermore, non-probabilistic frameworks have been proposed to formalize the problem, particularly in the
context of the mathematical theory of evidence [22], typically by means of the fuzzy set theory [23, 24] or
the theory of random-fuzzy variables [25].

As it can be seen, in this context models are primarily conceived as mathematical tools aimed at expressing
and combining uncertainties to produce measurement results that are as informative and reliable as possible
(significantly, the “mathematical relation among all quantities known to be involved in a measurement”, “a
general form” of which “is the equation A(Y, X, ..., X,) = 07, is called measurement model in [12]). On the



other hand, much less explored has been the whole framework, where the function of models in measure -
ment is systematically analyzed and their influence in the production of measurement results and their inter-
pretation is specified. In this perspective, we propose to consider measurement results as obtained from a
process which (explicitly or implicitly) includes a modeling activity, about both the measurement process
and the measurand, where:
® a model about the measurement process specifies the quantities involved in the process, the kinds of
their interactions, and the conditions of such interactions;
® a model about the measurand specifies the relevant structure of the object under measurement, the
definition of the measurand itself in reference conditions (i.e., as if it were measurable by an ideal
measuring system), and the set of quantity values which could be assigned to the measurand [26].
The basic thesis of this paper is that measurement uncertainty crucially depends on both such models. As ob-
tained by a measurement process, the knowledge on the measurand is incomplete primarily because of (i) the
idealization of the object under measurement, and (ii) the realization of the ideal measuring system, as as-
sumed / defined before measurement in a modeling activity.

3. The sketch of a model of a measurement process
According to its most general black box model, measurement is described as an empirical, fundamental
process producing an entity, called the measurement result, which is supposed to convey information on a
given entity, let us call it the object under measurement. More specifically, what is measured is a property
(e.g., a physical quantity) characterizing the object under measurement, i.e., the measurand, and the informa-
tion entity is produced by properly representing the outcome of a physical interaction between the object un-
der measurement and a measuring instrument in a specific environment. It is thus crucial acknowledging and
maintaining the distinction between:
e the physical outcome of the interaction, typically the output signal provided by a transducer (let us
call it “output quantity” for short), and
e the informational outcome of the representation, i.e., the quantity value that, “together with any other
available relevant information” [12], conveys information on the measurand.
Accordingly, a measurement process can be decomposed into two stages:
® an empirical stage, where the interaction between the object and the instrument is accomplished and
an output quantity is obtained;
® an informational stage, where the output quantity is represented as a measurand value.
In the simplest case, when coupled with the object under measurement the measuring instrument acts (i) as a
selector, interacting with the object under measurement with respect to a given quantity, the measurand, and
(i1) as a comparator, interacting in such a way to produce a comparison with a set of measurement standards
(in [27] it is suggested that the capability of measurand selection and comparison to standards are the func-
tional justification of the claim that measurement results convey objective and inter-subjective information
respectively). Both the selection and the comparison are usually imperfectly implemented in the measure-
ment process, in particular because: (i) measuring instruments might be sensitive not only to the measurand
but also to influence quantities (of the object under measurement itself, the measuring instrument, the envi-
ronment), under the acknowledgment that the coupled system is not perfectly closed with respect to the envi-
ronment; (ii) the comparison between the object under measurement and the measurement standards is usu-
ally performed asynchronously, where the measuring system operates as a memory unit and it might not be
perfectly stable in this function. In order to better highlight the basic characteristics of a measurement
process, in the rest of this Section a twofold idealization will be introduced, assuming both perfect closure
and perfect stability. The discussion of these issues is left to the next Section.
A quantity value deriving from such empirical + informational process is structurally obtained in three steps.
Step 1: mapping from quantities subject to measurement to output quantities.
The core component of a measuring system is a device which operates by transducing the quantity being
measured, O, to an output quantity, Q,., where such behavior is formalized by a transduction function Ty, as
shown in Fig.1.

T
Qin —Q> Qnut

Figure 1 — Basic transduction.

Although measuring instruments can be chained, so that the output quantity of a transducer is the input quan -
tity of another transducer, the output of the last measuring instrument of the chain (the only one, usually) is



what results from the empirical side of the measurement process. As a consequence, the sensitivity of the in-
strument and its resolution determine the conditions how the measuring interval is mapped to the set of out-
put quantities.

Step 2: mapping from output quantities to output quantity values.

Transducers exploited in measuring instruments are designed so that the output quantities they produce (i.e.,
the output quantities of the last transducer in the chain) are assumed as primitively discernible, in some ex-
perimental sense, depending on the specific nature of the output quantities themselves. This corresponds as-
suming that each output quantity can be mapped to an output quantity value, as sho*" " i¢>
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Figure 2 — Transduction followed by representation by means of transducer output quantity values.

This mapping can be abstractly characterized according to the following conditions:
e gpecification of a classification, implying the definition of a procedure to recognize the membership
of any given quantity to a class;
e assignment of labels to each class, so to represent classes by means of output quantity values;
® recognition of the membership of the actual output quantity to a given class, so that the correspond-
ing label is assigned.
Step 3: mapping from output quantity values to measurand values.
As shown in Fig.3, the mapping of output quantity values to measurand values is finally obtained by the in-
strument calibration, which has to elicit the information on the transduction behavior and to guarantee the
traceability of the measurement results to a given reference.
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Figure 3 — Mapping of transducer output quantity values to measurand values.

Indeed, as shown in Fig.4 for any given reference quantity S, as typically realized by a measurement standard
and such that s is the quantity value assigned to it in the traceability chain, instrument calibration is aimed at
producing a map v...= T.(s), and such that an appropriate set of references, S = {S;} is available and each S; is
mapped to a different quantity value s; (in the notations Ty and 7, the subscripts aim at highlighting the funda-
mental difference in the context of measurement between quantity equations and quantity value equations,
respectively describing experimental and informational facts).
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Figure 4 — Calibration.

Measurement exploits such information by inverting it, vi = T,”'(vou), as in Fig.5, so that the output quantity
value v, 1s associated with a measurand value v;, which, because of the hypothesis of transducer stability, is
assumed to be traceable to the reference S.
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Figure 5 — Measurement.



From the fact that, in the case of measurement of physical quantities, this behavior is typically based on a
physical effect, three categories of calibration conditions can be considered:

A. process based on non-parametric laws: the transducer behavior perfectly realizes a non-parametric
physical law, where all effects of influence quantities are included in the law; in this (clearly ideal)
case, no calibration would be necessary: once the transducer has been initially characterized, the law
is sufficient to assign measurand values;

B. process based on parametric laws: the transducer behavior realizes a parametric physical law, where
some of the parameters might keep into account undetermined or underdetermined effects due to in-
fluence quantities; in this case calibration has to be performed in order to remove all the degrees of
freedom in the law, and it exploits the structure of the law; for example, if a linear dependence is as-
sumed, then two distinct references are sufficient;

C. process based on the hypothesis of causality only: the transducer behavior realizes a transformation
which is analytically unknown, and only a black box model is given that assumes a causal behavior,
i.e., the transducer output is determined by the transducer input; in this case calibration has to be per-
formed and requires multiply probing the transducer to generate an appropriate sequence of (input
quantity value, output quantity value) data, thus typically in the form of a lookup table.

Hence, all three categories imply a model of the measuring instrument behavior, including its dependence on
influence quantities, from the strongest model (conditions A), which requires a complete knowledge of the
modeled system, to the weakest one (conditions C), where only its causal behavior is supposed. For all three
categories a further general constraint is assumed. Since T, is applied in measurement as the information-re-
lated inverse of the mapping Qi — Q.u, performed at the time #,, whereas it was obtained in calibration by S
— Qou, performed at the time ¢, ¢, # ., the hypothesis is that the transduction function T, did not change in
the interval [#,, #.]. Accordingly, the model assumes in particular the stability of the measuring instrument.
On the other hand, the structure of the process depicted in Fig.5 emphasizes the complementary role of the
two stages of which measurement is composed: (i) in the empirical stage the output quantity is experimen -
tally determined, but is still unknown; (ii) at the end of the informational stage, the output quantity turns out
to be known, but the outcome, i.e., the measurement result, is only obtained through a model of the measure-
ment, and therefore it should be considered as assigned [13]. Hence, this simple model of the measurement
process highlights the interest of studying the role of models in measurement. As it will be discussed, the sig-
nificance of the information obtained in measurement critically depends on the models exploited in both the
empirical and the informational stage of measurement.

4. Highlighting the role of models in measurement
Any measurement is performed with a goal which, explicitly or implicitly, gives the specifications of the
process and whose achievement justifies the resources to be employed: hence, any measurement is aimed at
solving a measurement problem, stated in terms of the object under measurement and the measurand, and in-
terpreted in view of the measurement goal. With a simple example the role of models in a measurement prob-
lem can be presented. Let us suppose that the electrical resistance R of a given component ¢ has to be mea-
sured for some goal, so that the measurement problem is specified in particular by the pair (c, R). A solution
to the problem implies accomplishing three activities.
Activity 1: analysis - idealization. A twofold idealization is typically performed: first, a model of the object
under measurement is introduced, e.g., the component ¢ is modeled as a resistor ¢* obeying the Ohm’s law;
second and consequently, the measurand is defined, e.g., as the electrical resistance R*, evaluated using posi-
tive real numbers and not influenced by any physical quantity, such as temperature. In this way the measure-
ment problem:

(¢, R)
becomes the ideal measurement problem:

(c*, R*)
Of course, such idealization is not imposed to the modeler, who by means of these models actually decides
the concepts (of the object under measurement and the measurand) she considers appropriate in dependence
of her goals. For example, a general option to reduce the requirements as for the measurand idealization is to
include in its definition all the environmental conditions and to maintain them implicit (“the measurand is the
electrical resistance of the component in this moment in these conditions, unknown and whatever they are”).
This position has the operative immediate benefit of avoiding the need to measure any influence quantity, but
it prevents projecting the acquired information outside the strict (and unknown) context in which it has been
obtained.
Activity 2: ideal solution. A solution to the identified ideal problem is then searched, also by decomposing it



into a set of more tractable problems if appropriate, e.g., by assuming that by means of the Ohm’s law a
quantity value for R* of c¢* can be obtained by simultaneously measuring the electrical potential difference
J* and the current intensity /* across c*. The ideal problem (c*, R*) is thus decomposed into two ideal prob-
lems:
(c*, V")
(c*, I*)
assumed to be solvable by ideal measurement systems, e.g., an ideal voltmeter m,* and an ideal ammeter
m/*, together with an ideal measurement procedure specifying how m,* and m/* are to be applied to c* to
find the quantity values of V* and I*, where the hypothesis of ideality for m,* and m* supposes their results
to be perfectly traceable to appropriate references. As a consequence, the solution to the ideal problem has
the following structure:
e apply my* and m/* to c* according to the procedure and find a quantity value v* of V'* and a quantity
value i* of [*;
e divide v* by i* and find the result, i.e., a quantity value »* of R*.
In this activity, both empirical and mathematical operations are specified.
Activity 3: synthesis - realization. Once a solution to the ideal problem has been found, a twofold de-ideal-
ization is typically required: first, to obtain some instances my and m; of the ideal measurement instruments
my* and m/*; second, to couple the object under measurement with the measuring instrument(s). In this way,
a solution of the measurement problem is found according to the procedure specified in the ideal solution. As
a consequence, the actual solution has the following structure:
e obtain my and my;
e apply my and m;, to ¢ according to the procedure and find a quantity value v of V and a quantity value
iofI,
e divide v by i and find the result, 7, interpreted as a quantity value of R.
The diagram in Fig.6 depicts the structure of the process.

ideal measurement process
- modeled coupled system
| _ transduction laws
- ideal system dynamics

ideal measurement problem ideal solution
- modeled object
- defined measurand

4
idealization analysis synthesis realization
A
) measurement process
measurement problem solution
. - coupled system
- object under measurement | -
- transduction
- measurand .
- system dynamics

Figure 6 — Structure of solution of a measurement problem.

This structure highlights that the validity of the obtained results rests not only on the empirical quality of the
measurement, as traditionally acknowledged, but also, and critically, on (i) the adequacy of the idealization
of the measurement problem and (ii) the degree of correspondence between the ideal and the actual measure-
ment process. In the example, the measurement problem, as presented, is idealized for several, well known,
reasons, in particular the assumptions of lumped parameters and of independence from temperature (i.e., in
the relation:
R(T)=Ro [1 + (T - To)]

the parameter o is hypothesized to be null; even in the refined case where o # 0, an idealization would be as-
sumed, in the hypotheses that o is a constant and that the dependence of R on temperature is linear); in its
turn, the realization of the ideal measurement process implies some assumptions, in particular about the ac-
tual contemporariness of the application of my and m;,, and the choice between the alternative options shown
in Fig.7, where either the internal resistance of the ammeter is assumed negligible (left diagram) or the inter-
nal resistance of the voltmeter is assumed very large (right diagram).



Figure 7 — Two alternative options to realize the ideal solution of an exemplary measurement problem.

Of course, enhancing the quality of the involved models, i.e., reducing their “distance” to the actual systems
and processes, is possible, but at the cost of increasing the complexity of the whole measurement process and
the resources required for its execution (e.g., if the dependence on temperature of resistance is included in
the model, then the process must be modified to include the measurement of temperature). Hence, both (i)
and (ii) imply a model-related decision on the trade-off between model accuracy and resources to be em-
ployed, and therefore between quality of measurement results and costs of the measurement process, where
the measurement goal gives the decision criterion.

5. Accounting for uncertainty in measurement processes

The previous considerations give an encompassing context to discuss about the role of uncertainty in mea-
surement. This will be done in two steps, by first analyzing how uncertainty is accounted for in the Guide fo
the expression of uncertainty in measurement (GUM) [3] and how such account can be incorporated in a sys-
tem theoretical analysis, as proposed in [1, 2], and then by suggesting how this analysis can be extended in
future developments.

According to the GUM (paragraph 3.3.2) different possible sources of measurement uncertainty are acknowl -
edged, roughly classifiable into the following groups.

Group I, concerning the measurand, e.g., incomplete definition of the measurand; imperfect realization of the
definition of the measurand.

Group II, concerning the measurement procedure, e.g., assumptions incorporated in the measurement method
and procedure; approximations incorporated in the measurement method and procedure.

Group 111, concerning the sources, e.g., inexact values of measurement standards and reference materials; in-
exact values of constants and other parameters obtained from external sources.

Group IV: concerning the environment, e.g., imperfect measurement of environmental conditions; imperfect
knowledge of the effects of environmental conditions.

Group V, concerning instruments, e.g., bias in reading analogue instruments; finite instrument resolution or
discrimination threshold.

An interpretation of how uncertainty originates can be obtained by analyzing the equation which describes
the dependence of the measurand on the quantities that are involved in the measurement process. Two gen-
eral cases should be taken into account, whether (o) the transducer is supposed to be directly sensitive to the
measurand (as when potential difference is measured by a voltmeter), or () to obtain a measurand value a
computation is required (as in the previous example where resistance is computed by potential difference and
current intensity). Since in case [ the measurement problem is decomposed into one or more o problems and

then a computation stage, let us focus here on the o case. The following equation is introduced:

Y=f(X, 2) (1)
where Y is the measurand, X is the transducer output quantity and Z a vector of influence quantities, whose
values and uncertainties are assigned in the current measurement or by external sources. Eq. (1) can be called
the model equation, as it represents the connection between the measurand and the quantities which are sup-
posed to uniquely determine it in the given measurement context. Thus, a model equation can be viewed as
an inverted version of:

X=g(¥,2) ()
which describes X as the effect of Y given Z. Eq. (2) is a generalized version of the transduction equation in-
troduced above (see Fig.1) and represents the model of a causal connection such that the measurand, 7V, is in-
terpreted as one of the causes producing the output quantity, X, in a context characterized by the vector Z of
influence quantities (it could be noted that terminology on this matter is unfortunately still far from a general
agreement; the VIM3 calls f'the “measurement function” [12]; particularly in the study of uncertainty / distri-
bution propagation, see, e.g., [28] and [29], eq. (2) is termed the “observation equation” and eq. (1) the
“measurement equation”).

This provides the following generic description of the steps leading to measurement:
1) identify Y, X, and Z;



2) identify the interaction between Y, X, and Z, and model them in terms of the generalized transduction
equation, eq. (2);

3) introduce the imperfections due to incomplete knowledge concerning steps 1) and 2);

4) invert the mathematical relation to obtain the model equation, eq. (1), from the generalized transduction
equation.

These steps are systematically considered in the description of how uncertainty enters the measurement
process proposed by Sommer and Siebert [1, 2]. According to his description, the evaluation of measurement
uncertainty is based both on the way the measurement process is construed and on the way such a process is
affected by influence quantities. Hence, the evaluation of measurement uncertainty involves the knowledge
of both how the process is structured, as represented by the generalized transduction equation, and the role of
those quantities, represented by means of probability density functions. In this context three components of
measurement uncertainty are acknowledged, related to:

(1) source units, representing measurable quantities provided by a source, associated with uncertainties due
to possible differences between nominal and actual values (sources in Group III);

(2) transmission units, representing signal processing, associated with uncertainties due to possible interfer-
ences caused by influence quantities (sources in Group IV);

(3) indicating units, representing (transduction) output quantities, associated with uncertainties due to possi-
ble limits of resolution (sources in Group V).

Hence, this characterization accounts for the possible uncertainties due to (1) differences between nominal
and actual values of standards, (2) the role played by the influence quantities during the process, and (3) the
interpretation of the output quantities, all of them taken into consideration in probabilistic terms. On the
other hand, important sources of uncertainty, such as those related to the definition of the object under mea-
surement, the definition of the measurand, the definition of the coupled system, the definition of the trans-
duction laws, are out of the scope of this description. Our claim is that the existence of uncertainties is criti-
cally dependent also on the modeling activity concerning the measurand and the measurement process, SO
that uncertainty sources in Groups I and II turn out to be significant. In reference to the Activities introduced
in Section 4, measurement uncertainty is connected with modeling because:

(i) 1in the analysis step, the introduction of models of entities and quantities involves idealization, and
therefore some distortion of how such entities and quantities actually are;

(i1) in the ideal solution step, the introduction of models of coupled systems involves the specification of
transduction laws linking quantities of different kinds, and therefore influence quantities and interac-
tion laws enter the picture;

(iii) in the synthesis step, the realization of entities determined with respect to certain quantities, the stan-
dards, involves production, and therefore some distortion of how the entities to be realized ideally
are.

By focusing in particular on the uncertainties depending on the specification of the measurand and of the
measurement procedure, let us review the example introduced in Section 4, under the hypothesis that the em-
pirical stage of measurement is implemented by transducers mapping potential differences and current inten-
sities to angular positions (as indicated in the display of a voltmeter and an ammeter), whose quantity values
are assumed to be known. Then in the informational stage of measurement a value for the measurand, resis -
tance, is obtained by exploiting Ohm’s law. Let us denote by Q. the angular position of the voltmeter
pointer and by Q.. the angular position of the ammeter pointer. The model equation can be now flexibly
used:

1) for modeling Ohm’s law: R=f(V, )=V /I

2) for modeling the first transduction process, €.g.: V' = fi(Or.ou) = O Orout

3) for modeling the second transduction process, €.g.: I = f2(Oiout) = O Orout

4) for modeling the composed function: R = f3(Oy.ous Orout) = A Ovout / & - Qrout

There may be uncertainties linked both to the transduction processes and to the output quantities, thus inter-
pretable by Sommer’s transmission units and indicating units respectively. But it should be clear now that, in
order to characterize such uncertainties, it is crucial to take into account the way in which the measurand and
the whole process have been modeled, in particular by making the hypotheses used in defining such models
explicit, e.g., the hypotheses concerning:

e the validity of Ohm’s law;

e the linearity of the relation between V and Oy ou;

e the linearity of the relation between I and Q;ou;

e the closure of the whole system, and therefore the independence of the mentioned quantities from in-



fluence quantities.
This further supports the thesis that models in measurement play a critical role in the characterization of the
measurement uncertainty. While the systematic approach proposed in [1, 2] is an appropriate tool to identify
the transducing processes and to keep track of the points where uncertainties affect them, it has to be comple -
mented with an encompassing framework enabling the identification of the points where idealization of real
systems and realization of ideal systems operate: these may be important sources of measurement uncer-
tainty. This analysis of the measurement problem and process can be exploited accordingly, to propose a pre-
liminary, tentative reclassification of the sources of uncertainty, as follows.
Uncertainties due to idealization:
¢ on the object under measurement (e.g., modeling a physical object as a rigid body);
¢ on the measurand Q;,:
© concerning the domain theoretical framework (e.g., modeling a material body as homogeneous,
such that its density is constant; assuming a given set of influence quantities for Q);
o concerning the operational framework (e.g., neglecting the effects of some assumed influence
quantities);
® on the measurement process:
o concerning the domain theoretical framework (e.g.,, deciding the laws on which the measure -
ment process is based);
o concerning the operational framework (e.g., neglecting some of the assumed laws);
© concerning the computational framework (e.g., admitting some approximations);
e on the transducer output quantity Qou:
o concerning the domain theoretical framework (e.g., assuming a given set of influence quantities
for Qou);
© concerning the operational framework (e.g., neglecting the effects of some assumed influence
quantities).
Uncertainties due to realization:
e of the measurand Q;,(e.g., imperfect realization of its definition);
e of the measurement process:
© concerning the environment (e.g., partial knowledge of the environmental conditions and their
effects);
© concerning the instrumentation (e.g., imperfect knowledge of the reference quantity values used
in calibration; limited instrument stability);
e of the transducer output quantity Q.. (e.g., errors due to finite reading resolution).
On the whole, this classification might be exploited as a template in the construction of the uncertainty bud-
get, to keep into account all the relevant components of the (combined standard) measurement uncertainty.

6. Conclusions

The aim of this paper has been to introduce the idea that modeling activities are fundamental to understand
and assess the structure of the measurement process and to show how measurement uncertainties are essen-
tially involved in the process: models are the ties between measurement and uncertainty. Since 1) any mea-
surement is based on a specific set of interactions between the object under measurement and a measuring in-
strument and 2) any such interaction is ruled by a specific causal condition, as typically described by a physi -
cal law, the understanding of a measurement process is crucially dependent on the understanding of the trans-
duction on which it is based. While in principle a purely black box model of the transducer behavior might
be assumed, such a model is instead generally construed by exploiting the available physical theories and
specifying them to the given measurement context and in view of the given measurement goals. In this mod -
eling activity idealizations are constantly at work, so that all models can only be considered as tools to ac-
quire approximate information on the actual systems and quantities involved in the process. These approxi-
mations are a critical source of uncertainties in measurement, and highlight that the GUM hypothesis that the
measurand “can be characterized by an essentially unique value” is grounded on a biased consideration of
the components of the uncertainty budget.

The foregoing analysis of the structure of the modeling activity involved in a measurement process appears
to be significant for supporting in the identification of the uncertainty sources and in the evaluation of the
amount of uncertainty due to any specific source. Indeed, the knowledge of the role of models in measure-
ments and of the possible ways in which idealizations underlying the construction of models and their practi-



cal realization can affect measurement results is essential to appreciate the significance and the correctness of
the information obtained by measurement. The inherent presence in any measurement process of both an em-
pirical and an informational stage highlights that measurement results are not simply determined, but as-
signed consistently with the given model(s).
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