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Abstract: The concept system around ‘quantity’ and ‘quantity value’ is fundamental for

measurement science, but some very basic issues are still open on such concepts and their

relation. This paper argues that quantity values are in fact individual quantities, and that a

complementarity  exists  between  measurands  and  quantity  values.  This  proposal  is

grounded on the analysis of three basic “equality” relations: (i) between quantities, (ii)

between quantity values, and (iii) between quantities and quantity values. A consistent

characterization of such concepts is obtained, which is then generalized to ‘property’ and

‘property  value’.  This  analysis  also  throws  some  light  on  the  elusive  concept  of

magnitude.
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1. Introduction

Being the “process  of experimentally  obtaining one or more quantity  values that can

reasonably be attributed to a quantity” [1, 2.1], measurement is an (or maybe even the)

operative connector of quantities and quantity values. Hence the concept system around

‘quantity’ and ‘quantity  value’ is fundamental  for measurement  science.  For example,

again  according  to  the  International  Vocabulary  of  Metrology  –  Basic  and  general

concepts  and  associated  terms (VIM3)  [1]  measurement  units  and  measurands  are

quantities,  and  true  values  and  indications  are  quantity  values.  The  relation  between
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quantities and quantity values established by means of measurement is  fundamentally

characterized by measurement uncertainty, as alluded by the admission that more than

one  quantity  value  might  be  “reasonably  attributed”  to  the  quantity  intended  to  be

measured, i.e., the measurand.

While measurement uncertainty is a widely considered subject in measurement science,

less discussed is the relation between ‘quantity’ and ‘quantity value’ as such, although

some clues suggest that such relation is still open for better clarification. Just to remain in

the context of JCGM documents, it has been written [2] that “in future editions of [the

VIM] it is intended to make a clear distinction between the use of the term error as a

quantity and as a quantity value. The same statement applies to the term indication. In the

current document such a distinction is made. [On the other hand, the VIM3] does not

distinguish explicitly  between these uses”.  The reference is  plausibly to  some related

inconsistencies  in  the  VIM3,  as  when  it  is  written  that  “indications,  corrections  and

influence quantities can be input quantities in a measurement model” [1, 2.50 Note 2],

thus in particular assuming indications as quantities, against the definition of ‘indication’

as “quantity value provided by a measuring instrument or a measuring system” [1, 4.1].

The solution  proposed in  [2]  is  to  more  sharply  distinguish  between quantities  (e.g.,

‘indication’)  and  quantity  values  (e.g.,  ‘indication  value’),  whereas,  on  the  contrary,

sometimes such distinction is simply neglected, as when the simplification is assumed

that “the input to the measurement system is the true value of the variable” [3] (it should

be clear that in fact this is just a mistake: the input to a measurement system is a quantity,

not a quantity value).
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We argue that the issue is not only a lexical one, and rather that it highlights the need of a

better understanding of such concepts and their relations. Taking into account quantities

and their  values is indeed the everyday practice in the scientific endeavor as soon as

mathematical modeling and measurement come on the scene. Reducing the ambiguities

about  them –  and  some of  the  related  concepts,  in  particular  ‘kind  of  quantity’ and

‘magnitude’ – seems to be a worthwhile purpose.

The  following  discussion  does  not  require  measurement  uncertainty  to  be  kept  into

account: were our conclusions be accepted, they would be immediately generalized to the

case where more than one quantity value is to be “reasonably attributed to a quantity”.

The problem is analyzed in Section 2 and on this basis in Section 3 a solution is presented

for characterizing the concepts ‘quantity’ and ‘quantity value’, and then generalized to

‘property’ and ‘property value’. Section 4 is devoted to explore the delicate concept of

magnitude  and  two  alternative  scenarios  are  proposed  for  its  interpretation.  The  last

Section synthesizes some highlights of the proposed framework.

2. The problem: what are quantities and quantity values?

Measurement is aimed at attributing quantity values to quantities [1]. Provided that this

generic  statement  is  accepted,  the  commonly  acknowledged  epistemic  role  of

measurement implies that establishing a relation between quantities and quantity values

is a significant process. It is not amazing then that the appropriate characterization of

such concepts, and therefore of the related conditions of possibility of such relation, i.e.,

of measurability [4, 5], is considered a basic task for measurement science. On the other

hand, both ‘quantity’ and ‘quantity value’ are not exempt from ambiguity, as excellently

documented  in  [6].  The issue is  further  highlighted  by the multiplicity  of the lexical
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options. For these concepts, not always with a clear distinction between them, terms such

as  “magnitude”  [7,  8,  9],  “property”  [10],  “attribute”  [11],  “characteristic”  [12],

“manifestation” [13, 14], “quantity” [15], have been traditionally used.

2.1. ‘Quantity’

The term “quantity” is unfortunately polysemic since it designates both entities such as

length  and  entities  such  as  the  length  of  this  object,  i.e.,  sentences  as  “length  is  a

quantity” and “the length of this object is a quantity” would be customarily accepted as

correct.  For  the  latter  entity  the  three  editions  of  the  VIM  have  alternatively  used

“specific  quantity”  (VIM1,  [16]),  “particular  quantity”  (VIM2,  [17]),  and  “individual

quantity” [1], while never defining the concept as such. We will call general quantity an

entity  such as length,  and  individual  quantity an entity  such as the length of a given

object. The basic conception will be assumed that:

an individual quantity is an instance of a general quantity

so that, e.g., the length of this object is a length. The concept of general quantity can be

then interpreted in two complementary ways:

1. as  a  kind  of  quantity,  i.e.,  as  a  respect  of  comparability,  thus  accounting  for

expressions such as “object i and object j are indistinguishable with respect to

length  Q” (or, more usually, “i and  j have the same length”),  which can be

written as i ≈Q j;

2. as  a  function mapping  objects  to  individual  quantities,  thus  accounting  for

expressions  such  as  “the  length  of  object  ”,  indeed  customarily  written  in

functional form as Q(), e.g, length().
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Interpretation 1 provides an explanation for the fact that individual quantities inherit the

features of the kind they instantiate [18]. For example,  the velocity of any object has

dimension LT–1 because velocity has such dimension. Interpretation 2 highlights that any

general quantity  Q has a domain of objects   to which it can be applied, and therefore

that each of such objects  has an individual quantity q = Q() (general and individual

quantities will be denoted by upper case and lower case characters respectively). Finally,

1  and  2  are  straightforwardly  connected  by  the  condition  that  two  objects  are

indistinguishable with respect to a general quantity Q when their individual quantities are

the same: i ≈Q j if and only if Q(i) = Q(j) (in Section 4 this concept of ‘having the

same quantity’ will be further discussed).

General quantities and individual ones are related but significantly different entities: for

example,  while  the  concepts  around  ‘system  of  quantities’  (e.g.,  ‘base  quantity’ and

‘quantity  dimension’) and those related to quantity types (e.g.,  ‘ordinal quantity’)  are

defined in reference to general  quantities,  measurement  is  operatively concerned with

individual quantities, such as measurement units and measurands. Indeed, the quantity to

which “one or more quantity values [...] can reasonably be attributed” [1, 2.1] by means

of measurement is an individual one, such as the length of this object, surely not a general

one, such as length. Analogously a quantity unit is an individual quantity. For example,

the meter is the length of a given phenomenon, i.e., the path traveled by light in vacuum

during a time interval of 1/299 792 458 of a second.

(The term “quantity unit” is adopted here in place of the customary “measurement unit”

because  most  of  what  follows  applies  to  generic  processes  of  value  assignment  –

“evaluation” for short henceforth –, not only measurement,  this lexical position being
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consistent  with  specific  usages  such as  “mass  unit”  as  a  short  form of  “unit  for  the

quantity mass” [1, 1.9 Note 4]. The ambiguity between general and individual quantities

is manifest in the coordinated terms “quantity unit” and “unit quantity”: in the former the

occurrence “quantity” refers to a general  quantity, the unit  for the considered general

quantity, whereas in the latter it refers to an individual quantity, the individual quantity

which is assumed as the unit.)

The basic formula of quantity calculus is then written [19]:

q = {q}·[q] (1)

where the left hand side term denotes an individual quantity, i.e.,  q = Q() for a given

object .

We will focus on individual quantities here, and therefore whenever the unqualified term

“quantity” is used henceforth will be referred to an individual quantity.

2.2. ‘Quantity value’

A note about terminology work is now appropriate. According to [20], an “intensional

definition is a concise statement of what the concept is. It states the superordinate concept

to [the defined] concept expressed by the designation and its delimiting characteristics”.

For example, in the mentioned definition of ‘measurement’ given by the VIM3 ‘process’

is  the  superordinate  concept  (i.e.,  measurement  is  a process)  and  ‘condition  of

experimentally  obtaining...’  is  the  delimiting  characteristic.  Analogously,  the  VIM3

assumes ‘property’ as the superordinate concept of ‘quantity’, plausibly for both general

entities (length, being a general quantity, is a general property) and individual ones (the

length of this  object, being an individual quantity, is an individual property). We might

expect that the same structure:

6



defined concept: superordinate concept + delimiting characteristics

applies to ‘quantity value’. On this matter the evolution of the definition of the concept

‘quantity value’ across the three editions of the VIM is a complex one:

 VIM1: “the expression of a quantity in terms of a number and an appropriate unit

of measurement” [16, 1.17];

 VIM2:  “magnitude  of  a  particular  quantity  generally  expressed  as  a  unit  of

measurement multiplied by a number” [17, 1.18];

 VIM3: “number and reference together expressing magnitude of a quantity” [1,

1.19].

Even the fundamental nature of the entity is characterized differently in these definitions:

while the VIM1 considers a quantity value to be a linguistic entity (an “expression”),

according to the VIM2 it is a non-linguistic entity (a “magnitude”). As for the VIM3, the

definition  is  phrased  so  that  the  superordinate  concept  is  not  stated  (‘number  and

reference’  is  hardly  considered  a  single  concept).  Furthermore,  the  very  concept  of

reference,  adopted plausibly to generalize the one of measurement unit to the case of

ordinal quantities, is undefined in the VIM3, and the nature of the entity is unfortunately

problematic in its turn (according to [1, 1.19 Note 1] the reference in a quantity value can

be either (i) a measurement unit,  i.e., a quantity, or (ii) a reference to a measurement

procedure, i.e., a reference to a description and therefore to a linguistic entity, or (iii) a

reference material, i.e., a physical entity; a definition of ‘reference’ encompassing these

options is hard to imagine).

The  problem is  further  highlighted  by  considering  again  eq.  (1),  where  {q}·[q]  is  a

quantity value, according to the first option of the mentioned [1, 1.19 Note 1]. Maxwell
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explained such equation as follows:  “Every expression of  a  Quantity  consists  of  two

factors or components. One of these is the name of a certain known quantity of the same

kind as the quantity to be expressed, which is taken as a standard of reference. The other

component is the number of times the standard is to be taken in order to make up the

required quantity. The standard quantity  is  technically  called Unit,  and the number is

called the Numerical Value of the quantity.” [21].

By assuming that by “the name of a certain known quantity...” Maxwell meant what it

could be generically called the expression of a quantity unit (“Measurement  units are

designated  by  conventionally  assigned  names  and  symbols”  [1,  1.9  Note  1]),  this

sentence can be written in shorter form as:

expr(q) = number, expr(unit)

It is not clear why Maxwell chose to describe eq. (1) by focusing on expressions instead

of expressed entities (analogously it is argued in [6, p.83]), and superposing numbers and

numerals, i.e., their expressions (it is acknowledged that the distinction was not so well

defined  at  that  time;  in  [22]  both  “measurement  is  the  assignment  of  numbers”  and

“measurement is the assignment of numerals” can be read, and numerals appear to be

interpreted as both expressions of numbers and nominal values written as numbers).

This emphasis on expressions has generated some unfortunate misunderstandings since

then. Discussing about expressions is sometimes actually useful, for example in search of

standardization (consider the troubled story of the decimal separator, either the dot or the

comma: an issue only related to expressions), and any quantity equation can be written,

and more generally communicated, only by means of expressions denoting the involved

entities. But it is most important to acknowledge that a number does not coincide with its
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expression(s).  For  example,  “2”,  “two”,  “10binary”,  ...  denote the same number  but  are

different expressions, and an equation does not coincide with its written form: what is

equated are the expressed entities, surely not their expressions. A significant case of the

acknowledged importance of the distinction between expressions and expressed entities is

the  Guide  to  the  expression  of  uncertainty  in  measurement (GUM)  [23],  that

systematically and clearly writes about “evaluating and expressing” uncertainty, and in

particular distinguishes between Type A and Type B evaluations, surely not expressions

(from this point of view a better, even though longer, title would have been “Guide to the

evaluation and expression of uncertainty in measurement”: expression is required, but is

only the very final and tiny step of the process described in the GUM).

Nevertheless,  a  confusing emphasis  on expressions  has  remained  in  measurement,  as

witnessed by the following quotations (emphasis added):

 “the value of a quantity is generally  expressed as the product of a number and a

unit” [24];

 “the value of a quantity is its magnitude expressed as the product of a number and

a unit” [25];

 [the value of a quantity is a] number and reference together expressing magnitude

of a quantity” [1];

 [the value of a quantity is a] “set of a number and a reference constituting the 

quantitative expression of a quantity” [1, French version].

Even  if  the  reference  to  expressions  is  removed  from  these  definitions,  their

characterizations of the concept ‘quantity value’ remain non fully consistent with each

other because  of  a  significant  superposition  of  (put  in  other  terms:  a  not  so  clear
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distinction  among)  the  three  concepts  ‘quantity’,  ‘quantity  value’,  and ‘magnitude  of

quantity’. It seems that the concepts ‘(individual) quantity’ and ‘quantity value’ are worth

some further clarifications.

3. The solution: addressed quantities and classifier quantities

Let us consider again Maxwell’s eq. (1). It admits two complementary interpretations:

 a  theoretical one, according to which the quantity  q is stated to be equal to the

multiple {q} of the quantity unit [q]; hence, the symbol “·” designates here the

iterated  additive  concatenation  of  replicated  quantities,  abstracting  from  the

objects to which such quantities belongs;

 an  operational one,  according  to  which  at  least  in  principle  there  exists  a

procedure  that  allows  constructing  an  object  that  is  composed  by  properly

concatenating {q} replicas of the measurement standard that realizes the unit [q],

and the quantity  q characterizes an object   that is indistinguishable, relative to

the general quantity  Q, from this object, i.e.,  q =  Q(); hence, in this case the

symbol  “·”  designates  the  iterated  additive  concatenation  of  indistinguishable

objects with respect to the given quantity.

The  link  between these  two interpretations  is  constituted  by  the  assumption that  the

quantity of the object composed of {q} replicas of the standard realizing the unit [q] is

{q}·[q]. Hence, if Q() is the quantity of an object  that realizes the unit [q] then in this

case eq. (1) means:

Q() = Q()Q()... repeated {q} times (2)
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where  “”  designates the  additive  concatenation  of  quantities.  Such  concatenation

operation is in principle applicable to any quantity, not only to those which realize units.

For example, if for a given quantity Q() and a given unit [q]:

Q() = 2·[q] = Q()Q()

then an inference such as:

Q()Q() = 2·(2·[q]) = Q()Q()Q()Q()

is correct. On the other hand, eq. (2) highlights that the term at the right hand side of the

equation denotes a quantity in its turn, i.e., eq. (1) is in fact  an equation of quantities,

even  though  {q}·[q]  is  assumed  to  be  a  quantity  value.  This  consideration  is  also

confirmed by the inverse equation:

{q} = Q()[q]

(see, e.g.,  [1, 1.20 Note 2]), where the symbol “”  designates here an operation that

applies to quantities, further showing that measurands and quantity units are assumed to

be entities that in some sense can be divided with each other, the result being a number.

3.1. Two theses

The previous considerations are the basis for two theses which synthesize the solution we

propose to the problem under analysis.

Thesis 1: the entities involved in the left hand side and in the right hand side of eq. (1)

are of the same sort; both are individual quantities.

This thesis is, in a sense, trivially included in the assumption that both measurands and

quantity units are (individual) quantities, as the specific case shows in which  ≈Q  (i.e.,

11



the object under consideration   is shown as having the same quantity as the object  

which realizes the unit) and therefore:

Q() = 1·[q] = Q()

Furthermore, the set of quantities under consideration is closed under the operation  ,

i.e., both Q()Q() and Q()Q() = 2·[q] are quantities in their turn. Still, the fact

that the same concept, ‘individual quantity’, includes both measurands and quantity units,

which are distinctively different for several aspects, highlights its complexity. While in

measurement measurands are assumed as empirically given unknown entities, quantity

units  are designed, and therefore known before measurement,  in a process sometimes

called scale construction which produces a structure of classifiers assumed to be adequate

for the measurand under consideration. On this matter in [26] the metaphor of a net is

proposed: given a territory whose points are the possible measurands, a net of regularly

spaced meshes is constructed, each mesh corresponding to a (sub)multiple of the unit. On

the territory the net is then drawn so that each point is included in one and only one mesh,

i.e., each measurand is represented by one and only one (sub)multiple of the unit, and

therefore, once the unit has been defined, by one and only one quantity value (the fact

that  we are  not  taking  into  account  measurement  uncertainty  here  is  manifest).  This

complies  with  the  condition  that  two  operatively  indistinguishable  measurands  are

represented by the same quantity value, thus highlighting that the set of quantity values

generated by the quantity unit operates as a classification, each quantity value being an

element  of  it:  each  {q}·[q]  is  a  distinguishable  quantity, where  {q}  identifies  a  class

within the classification generated by [q] through quantity concatenation.

By developing Thesis 1 two sorts of individual quantities can be singled out:
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 the  first  sort  includes  quantities  that  are  known  by  pointing  out  objects  that

instantiate them, e.g., the length  Q() of the object  ; here the object   for the

quantity Q() can be suggestively called its address, so that Q() may be called

an addressed quantity, or a-quantity for short;

 the second sort includes quantities that are known as elements of a classification

generated  by  a  unit,  e.g.,  {q}·[q]  =  0.123 m;  hence,  {q}·[q]  may be  called  a

classifier quantity, or c-quantity for short.

(We are aware that the terms “addressed quantity” and “classifier quantity” might appear

cumbersome; we are just proposing them here for convenience, so to be able to reduce

the ambiguities due to the lexical overloading mentioned above.)

Accordingly:

 measurands and quantities subject to measurement are a-quantities, i.e., individual

quantities of objects which are considered as given and therefore can be indicated

by address (such as radius of circle  A, wavelength of the sodium D radiation,

kinetic energy of particle i in a given system – examples from [1], Note 1 to the

definition of ‘quantity’ – where the addresses are ‘circle A’, ‘sodium D radiation’,

‘particle i in a given system’ respectively);

 quantity  values are c-quantities,  i.e.,  individual  quantities of objects  which are

constructed  or constructible,  in the  simplest  case by additive  concatenation  of

objects which realize the quantity unit.

That a-quantities such as measurands and c-quantities such as quantity values are entities

of the same sort, i.e., individual quantities, is pivotal for understanding the meaning of

the equality in eq. (1), and this is further reasons why it is so important not to confuse
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quantity values with the symbols by which they are expressed, as emphasized in Section

2.2. A quantity value is as real as a quantity subject to measurement: their difference is

primarily in the way they are known, and only as a consequence in the way they are

expressed. Indeed, and more generally, equality relations involving individual quantities

are defined:

[first kind of equality; let us call it “-equality”, =]: between a-quantities: for example,

the length of this object can be ascertained to be equal to the length of that object,

and this may be the outcome of an experimental process in which no information

about quantity values is involved;

[second  kind  of  equality;  let  us  call  it  “-equality”,  =]:  between  c-quantities:  for

example, it may be known that 2·10–2 m is equal to 0.7874... in, an assessment

which does not require any experimental activity once the involved quantity units

have been defined and their relation identified.

The complementarity  is  manifest:  the  information  of  equality  of  a-quantities  (i.e.,  -

equality) is empirical but not inter-subjective, since it supposes the access to the objects

i and  j to  be  useful;  the  information  of  equality  of  c-quantities,  i.e.,  {q}·[q]  =

{q}’·[q]’, is inter-subjective,  being universally shareable, but not empirical. Neither of

them reports in fact a measurement result.

Equality relations are finally also defined:

[third kind  of  equality;  let  us  call  it  “-equality”,  =]:  between  a-quantities  and  c-

quantities. 

This is the interpretation of eq. (1) according to Thesis 1:

a-quantity = c-quantity
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or also, equivalently:

individual quantity known by address = individual quantity known by value

We believe that the distinction between such three kinds of equalities, as also synthesized

in Fig. 1, is crucial for the present discussion.

Figure 1 – The three kinds of equalities involved in the relations between a-quantities and c-quantities.

The very fact that three distinct equalities are possible between (addressed or classifier)

individual quantities is a hint of the inherent complexity of our subject.

(The astute reader is surely not confused by a fourth case of equality in the analysis in

Section 2.2, such that we concluded, e.g., that according to the VIM:

v = number · unit

Indeed, this is just the definition of ‘quantity value’, i.e., an equality-by-definition.)

The relation between a-quantities and c-quantities can be used now to clarify both the

structure of the process of measurement and the way in which such process provides

information on the object under measurement in terms of a -equality, as shown in Table

1.

Table 1 – Synopsis of the relations between quantities and quantity values.

Addressed quantities, Classifier quantities,

such as the length of this object, such as 0.123 m,

are elements of the world, are elements of a classification,

are assumed to be unknown before measurement, are assumed to be known before measurement,
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are individuated in terms of a given
object under measurement

are individuated independently of any
object under measurement

as measurands as quantity values

that are represented by quantity values. that represent measurands.

This can be further synthesized in the following:

Thesis  2:  there  is  a  complementarity  in  measurement  between  a-quantities  and  c-

quantities.

3.2. Measurement as assignment of quantity values to quantities

This  conceptual  framework  gives  a  basic  justification  of  the  epistemic  role  of

measurement, thus interpreted as a process in which an a-quantity, which is known by

address, i.e., by reference to the object under measurement in as much as it is empirically

given,  turns  out  to  be  known also  by  value,  i.e.,  by  reference  to  a  class  in  a  given

classification.  Accordingly, measurement is abstractly modeled as involving four stages

(for the sake of simplicity here presented only in the case the additive concatenation  is

applicable):

- Stage 1 – definition of the measurand:

q = Q() // equality is equality-by-definition here

the quantity q is specified as the a-quantity Q() of a given object ;

- Stage 2 – measurement standard calibration:

Q() = 1·[q] // -equality

a given object  is recognized as a standard realizing the unit [q], i.e., the quantity Q()

= 1·[q], and then Q()Q() = 2·[q], and so on;

- Stage 3 – experimental comparison:
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Q() ≈ Q()Q() repeated {q} times // -equality

Q() is recognized as indistinguishable from the a-quantity corresponding to a set of {q}

replicas of the object ;

- Stage 4 – representation of the measurand:

Q() = {q}·[q] // -equality

the measurand, i.e., the a-quantity  Q(), is finally represented by a quantity value, i.e.,

the c-quantity {q}·[q].

This description clearly shows that it is Stage 2, measurement standard calibration, where

the relation between an a-quantity, Q(), and a c-quantity, 1·[q], is first identified. This

critical relation is entirely based on the fact that calibration is performed under controlled

conditions  on  the  classification  generator  [q]  and  the  derived  quantities  k·[q].

Furthermore,  Stage  2  assumes  that  a  unit  [q]  for  Q was  previously  defined,  as  the

individual quantity of an object :

Q() = 1·[q]

e.g., length(path traveled by light in vacuum during a time interval of 1/299 792 458 of a

second) = 1 m,  where  the fundamental  fact  here is  that  this  is  a  defined (instead  of

obtained)  -equality,  thus  highlighting  that  the  experimental  identification  of  an  a-

quantity  (the measurand) with a c-quantity (the measured quantity  value) obtained by

measurement is grounded on a definitional identification of an a-quantity (the quantity

unit, as realized by a measurement standard) with a c-quantity (the unit quantity value),

typically through a traceability chain.
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In  the  empirical  component  of  measurement,  Stage  3  (of  course,  the  experimental

comparison is seldom performed synchronously, as in the case of the two-pan balance,

and  more  often  it  is  obtained  indirectly  via  a  calibrated  transducer),  the  information

acquired in calibration is complemented with information on the measurand, so that the

inferential assumption is finally made, Stage 4, that such information can be represented

as  in  eq.  (1).  Hence,  through  definition  and  calibration  the  inter-subjective  role  of

measurement is justified, aimed at providing information that can be communicated by

means of c-quantities,  i.e.,  quantity values, whereas through comparison the empirical

role of measurement is ensured, aimed at providing information that can be used to get

knowledge on some aspects of the world.

3.3. A generalization: a-properties and c-properties

The proposed interpretation of the relation between quantities and quantity values is in

fact independent of the algebraic structure, i.e., the “scale type”, of the involved entities:

what has been considered in terms of quantities and quantity values can be applied not

only to ordinal quantities, where the concept of quantity unit is not defined [1, 1.26], but

also to generic properties and property values, thus significantly widening the scope of

this conceptual framework. Indeed, eq. (1) is straightforwardly generalized to:

p ={p} in [p] (3)

where:

 p is an addressed individual property, e.g.,  the color of the surface of a given

object;

 [p] is a classification related to the general property P, e.g., [red, orange, yellow,

green, blue, violet];
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 {p} is a class in [p], e.g., blue,

so that the equation is read, e.g., the color of the surface of this object is blue in the

classification  [red,  orange,  …]  (when  the  classification  is  presented  as  a  scale,  the

property value is sometimes reported as “{p} on [p]”, as in the case “the hardness of

graphite is 1,5 on the Mohs’ scale”).

The previous analysis about individual quantities in eq. (1) can now be generalized to

individual properties in eq. (3). In particular, the operational interpretation of eq. (3) is

that at least in principle there exists a procedure allowing to generate an object that is an

element of the class {p} in the classification [p], and that such object is indistinguishable

from the object  by a P-related comparison, so that the individual property p = P() is

precisely  {p} in  [p].  This  shows that  numbers  do  not  play  any essential  role  in  this

conceptualization, and that the concept ‘property value’ can be consistently characterized,

e.g.,  as  the  element  of  a  given  classification  representing  a  property.  Whenever  the

property evaluation is of algebraically weak type (typically nominal or ordinal) [27], so

that  no  property  related  concatenation  is  allowed,  the  classification  can  only  be

extensionally defined, i.e.,  by explicitly listing the individual properties of which it is

constituted.  In  the  ratio  case,  whose  algebraic  structure  includes  concatenation,  the

classification  can be generated  by a  quantity  unit,  thus  re-obtaining  the  definition  of

‘(ratio) quantity value’, “unit multiplied by a number representing a quantity”.

4. Magnitudes

The upshot of the previous section is fourfold:

1. both measurands and quantity values are quantities;

2. measurands are a-quantities and quantity values are c-quantities;

19



3. measurement consists in identifying a c-quantity with an a-quantity;

4. such identification is based on the definitional identification of an a-quantity with

a c-quantity, as obtained by a quantity unit definition.

This provides a consistent account of measurement as a process of assigning a quantity

value to a given measurand (as mentioned in the Introduction, measurement uncertainty

is omitted in this analysis: more generally, the assignment is of “one or more quantity

values” [1, 2.1]). However, a further question can be posed concerning the interpretation

of the three relations of  -equality,  -equality, and  -equality, whether they are to be

conceived in terms of  identity or not. In particular, given that, e.g., the length  Q(i)  of

object  i is  ascertained to  be equal  to  the length  Q(j)  of  object  j,  the  question  is

whether such -equality implies that Q(i) and Q(j) are one and the same entity, or they

are two distinct, although equivalent, entities. In the philosophical lexicon, the alternative

is about a-quantities as either universal or particular entities. This issue is indeed clearly

a philosophical one, with negligible operative consequences, and nevertheless it deserves

some consideration here because such two scenarios  have significant consequences on

the  interpretation  of  the  concept  of  magnitude,  which  is  sometimes  used  to  describe

measurement and measurement results.

In what follows we will make use of the (philosophical) distinction between the reference

of an expression and its sense, conceived as the way in which the reference is presented

by that expression (a classical analysis on the subject is in [28]; in view of the present

discussion the first sentence of this paper is particularly interesting: “Equality gives rise

to challenging questions which are not altogether easy to answer.”).  For example,  the

expressions “6+5” and “1211/2” have the same reference, the number 11, yet they have

20



different senses since they present it as the sum of 6 and 5 and the square root of 121

respectively.  Indeed,  one  could  grasp  the  first  expression  only  and  nevertheless  the

reference remains the same. This distinction enables us to account for situations where

different quantity values are equated or are attributed to the same measurand as being

different ways of presentation of the same quantity.

On this basis let us take into account the problem: should the relations of -equality, -

equality, and -equality be conceived as identities or not?

First of all, both hypotheses share the same position as for -equality: a sentence such as

“2·10–2 m = 0.7874... in” is interpreted as stating that both “2·10–2 m” and “0.7874... in”

refer to the same quantity  q, even if they have different senses, since they refer to q by

representing  it  as  the  quantity  related  to  the  classes  2·10–2 and  0.7874...  in  the

classifications of meters and inches respectively. Hence, one quantity q is involved in the

relation with two different classifications.

On the other hand, -equality and -equality can be differently interpreted.

Scenario 1: all quantities, both a-quantities and c-quantities, are universal entities.

(i) The sentence “Q(i) = Q(j)” is interpreted as stating that the references of “Q(i)”

and “Q(j)” are the same universal quantity q, even if “Q(i)” and “Q(j)” have different

senses, since they refer to the quantity q by representing it as the one exemplified by the

objects i and j respectively. Hence, one quantity q is involved in the relation with two

different addresses, i and j.

(ii)  Accordingly,  the  sentence  “Q()  = 2·10–2 m”  is  interpreted  as  stating  that  the

references of “Q()” and “2·10–2 m” are the same universal quantity  q, even if “Q()”
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and  “2·10–2 m”  have  different  senses,  since  “Q()”  refers  to  the  quantity  q by

representing it as the one exemplified by  , while “2·10–2 m” refers to quantity  q by

representing it  as the one related to the element  2·10–2 in the classification of meters.

Hence,  one quantity  q is involved in the relation – the measurand is identical with the

quantity value – with two different epistemic states – before measurement the measurand

is known only by address whereas the quantity value is known by value.

In this Scenario, synthesized in Fig. 2, empirical indistinguishability is interpreted as an

effect  of  the  identity  between  quantities  and there  is  no  need  to  introduce  a  further

concept ‘magnitude’, as it would be identically magnitude(Q()) = Q() = q = 1 m.

Figure 2 – Relations between a-quantities and c-quantities according to Scenario 1.

Scenario 2: there are universal and particular quantities; a-quantity are particulars and c-

quantities are universals.

(i) The sentence “Q(i) = Q(j)” is interpreted as stating that the references of “Q(i)”

and “Q(j)” instantiate the same universal quantity q, even if they have actually different

references, a particular quantity qi possessed by i and a particular quantity qj possessed

by j respectively. Hence, two quantities are involved in the relation.
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(ii)  Accordingly,  the  sentence  “Q()  = 2·10–2 m”  is  interpreted  as  stating  that  the

reference of “Q(i)”, i.e., the particular quantity  qi, is an instance of the reference of “

2·10–2 m”, i.e., the universal quantity q. Hence, two quantities are involved in the relation:

the  measurand  is  not  identical  with  the  quantity  value,  being  a  particular  and not  a

universal entity.

In this Scenario, synthesized in Fig. 3, empirical indistinguishability is interpreted as an

effect of the fact that particular quantities are different, and there is room to introduce a

concept ‘magnitude’ as the universal quantity  q:  indeed,  Q(i) ≈  Q(j) if  and only if

magnitude(Q(i))  =  magnitude(Q(j)),  where  “≈”  denotes  such  indistinguishability

relation.

Figure 3 – Relations between a-quantities and c-quantities according to Scenario 2.

(It is interesting how such two Scenarios are presented by Russell in the foundational text

[29],  where  they  are  called  the  “relative”  and  the  “absolute”  theory  of  magnitudes

respectively:  “The  relative  theory  regards  equal  quantities  as  not  possessed  of  any

common property over and above that of unequal quantities, but as distinguished merely

by the mutual relation of equality. There is no such thing as a magnitude, shared by equal
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quantities.” “In the absolute theory, there is, belonging to a set of equal quantities, one

definite concept, namely a certain magnitude. [...] Two magnitudes cannot be equal, for

equality belongs to quantities, and is defined as possession of the same magnitude. […]

The quantities which are instances of a magnitude are particularized by spatio-temporal

position”.  The  classical  philosophy  of  measurement  did  not  reach  a  common

understanding  on  this  alternative.  For  example  while  Russell  supported  the  absolute

theory,  on  this  matter  Nagel  wrote  “if  Occam’s  razor  still  can  cut,  the  magnitudes

demanded by the absolute theory may be eliminated” [30]. And more recently on the

same vein Kyburg asserted: “We already have an uncountable number of real numbers in

our  universe;  why multiply  these  entities  by  supposing  there  is  also  an  uncountable

number of magnitudes of length, of distance, of temperature, etc.?” [31].)

The definition of ‘quantity value’ proposed in the VIM3, English version (“number and

reference together  expressing magnitude of a quantity”), is consistent with Scenario 2,

provided that “expressing” is interpreted as “representing”. Indeed:

(1) number and reference together representing the magnitude of a quantity

coincides with:

(1*) representation of the magnitude of a quantity as number and reference

i.e., according to Scenario 2:

(1**) representation of the magnitude q of a quantity qi as {q} and [q]

where q is then a universal quantity and qi is a particular quantity.

It  is  interesting  that  the  French  version  of  the  definition  is  neutral  with  respect  to

Scenarios 1 and 2, provided that, as above, “expressing” is interpreted as “representing”:
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(2) number and reference together constituting the quantitative representation of a 

quantity / magnitude

coincides with:

(2*) representation of a universal quantity / magnitude by means of number and 

reference

i.e.:

(2**) representation of the universal quantity / magnitude q by means of {q} and 

[q]

where no references are made to any particular quantity.

5. Conclusions

The theses presented in this paper propose a consistent conceptualization of ‘quantity’

and ‘quantity value’, and actually and more generally of ‘property’ and ‘property value’.

They provide:

i) a justification of the hypothesis that quantities and quantity values are entities of the

same sort, i.e., individual quantities;

ii) a distinction between individual quantities known by address (a-quantities), such as

measurands,  and individual  quantities  known by value (c-quantities),  such as quantity

values, thus grounding a sound interpretation of the basic formula of quantity calculus, q

= {q}·[q] and giving an unequivocal characterization of the concept ‘quantity value’ as c-

quantity, where the quantity unit is the generator of a classification;

iii) a generalization of these concepts to properties and property values;

iv)  an  insight  into  the  conceptual  structure  of  measurement  as  a  process  aimed  at

exploiting  the complementarity  between  a-quantities  and c-quantities,  by merging the
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information  given by measurement  standard calibration  with the information obtained

experimentally on the measurand;

v) finally, a distinction between two possible scenarios according to which the concept of

magnitude can be interpreted.

On this  ground, the sketch of definitions  for the relevant  concepts can be tentatively

proposed as follows (only for quantity-related concepts: the generalization to properties is

straightforward;  these definitions  hold identically  for both Scenario 1 and Scenario 2

except where noted).

general property: <primitive concept>

general quantity:  general property which, according to the current state of knowledge,

can be evaluated at least in an ordinal scale [VIM3-compliant version] [or: at least in an

interval scale; traditional version]

individual quantity: instance of a general quantity

addressed  quantity (a-quantity):  individual  quantity  specified  by  an  object  which

instantiates it [or: which possesses it; Scenario 2]

classifier  quantity (c-quantity):  individual  quantity  specified  as  element  of  a

classification

measurand: a-quantity intended to be measured

quantity  value: c-quantity  aimed at  representing  an  a-quantity [or:  representing  the

magnitude of a-quantity; Scenario 2]

According to these definitions such concepts present a remarkable symmetry, as shown in

Fig. 4 (for Scenario 1):
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Figure 4 – Relations between the basic concepts according to the proposed definitions.

At least a basic issue still remains undiscussed in this conceptual framework, whether any

individual  quantity  is  either  an a-quantity  or a c-quantity, or there may be individual

quantities  which  are  neither  a-quantities  nor  c-quantities.  This  apparently  abstract

question becomes relevant when the nature of quantity units, a specific case of individual

quantities,  is  investigated.  They  are  a-quantities  when  defined  in  reference  to  a

measurement standard which realizes them. It is the case of the unit of mass, defined as

“equal  to  the  mass  of  the  international  prototype  of  the  kilogram” [24],  where  such

prototype  is  the  address  of  the  a-quantity  kilogram.  But  what  about  a  quantity  unit

defined in reference to a phenomenon which is assumed to be a universal entity because

of a physical law? Consider the case of light in vacuum for the meter: of course, many

instances of light in vacuum can be obtained, and exploited as measurement standards,

but the meter  is  defined in reference to the phenomenon as such, not to any of such

instances.  And  what  about  quantity  units  possibly  defined  in  reference  to  universal

constants? Do these definitional changes also imply ontological changes? This opens the

door to a further discussion on the subject.
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