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Abstract

An appropriate characterization of property types is an important topic for measurement science. On

the basis of a set-theoretic model of evaluation and measurement processes, the paper introduces the

operative concept of property evaluation type, and discusses how property types are related to, and

in fact can be derived from, property evaluation types, by finally analyzing the consequences of

these distinctions for the concepts of ‘property’ used in the International Vocabulary of Metrology –

Basic and General Concepts and Associated Terms (VIM3).
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1. Introduction

“In communication, not every individual object in the world is differentiated and named. Instead,

through observation and a process of abstraction called conceptualization, objects are categorized

into classes,  which correspond to units  of knowledge called  concepts,  which are represented in

various  forms of  communication.”  [1].  According to a  standard view in philosophy of science,

originated by the seminal study by Campbell [2] and developed within the positivist tradition, in

particular [3-5], the concepts used by scientists to describe objects are classified, according to three

general types, as qualitative, comparative, and quantitative, as sketched in Figure 1.

Figure 1. A traditional classification of concepts.

Qualitative concepts simply allow to categorize objects in classes, so that a system of such concepts

generates a classification of a domain of objects. Comparative concepts allow to relate objects with

each  other  in  virtue  of  a  relation  of  total  order.  Finally,  quantitative  concepts  allow to  assign

numerical values to objects in such a way that the relations between numbers represent relations

between objects.

In his 1873 Treatise on Electricity and Magnetism, J. C. Maxwell [6] characterized a specific kind

of entities, falling under quantitative concepts, that he called “physical quantities”, as entities that

can be represented by two components: (i) a measurement unit; (ii) a numerical value assigned with
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respect to the unit1. Building on the Euclidean concept of measure (see, e.g., [8]), the measurement

unit was assumed to be a known quantity of the same kind of the quantity to be expressed, the

numerical value describing the number of times the unit is to be taken in order to make up the

quantity. This can be synthesized in the form:

Q = {Q}[Q]

where Q is the quantity to be expressed, {Q} is a number and [Q] is a measurement unit. This is

now a standard expression within the so called quantity calculus. If written:

{Q} = Q/[Q]

this expression justifies why entities such as Q are called “ratio quantities” (for a thorough analysis

on this subject see [9]).

The characterization provided by Maxwell gives rise to a number of questions when confronted

with the aforementioned classification of concepts:

1) What kind of entities are the quantities?

2) What kind of entities are the kinds of quantities?

3) How is it possible to attribute the same kind to different quantities?

4) Is  it  possible,  and in the case how, to  generalize the expression  Q = {Q}[Q]  to all  kinds of

concepts, qualitative and comparative as well as quantitative?

The significance of last question is highlighted by the comparison of examples such as:

- the length of this object is 1.23 m;

- the shape of this object is E3 in a given classification system,

that, despite of the difference of the involved concepts, have an invariant structure:

property of object is value with respect to reference.

A significant step towards both the generalization of Maxwell’s standpoint and the solutions of the

foregoing problems was made by the International Vocabulary of Metrology – Basic and General

Concepts  and Associated  Terms (VIM3)  [10].  The VIM3 proposes  a  threefold  division  for  the

primitive superordinate2 concept of property3, similar to the traditional one. This concept is firstly

specified  into  the  two  subordinates  ‘nominal  property’  and  ‘quantity’,  the  differentiating

1 When dealing with concept systems it is appropriate to maintain the distinction between representation and expression: the fact that
an entity can be represented by a number and a measurement unit is independent of the expression chosen for the number, i.e., a nu -
meral, and the term by which the unit is identified. On the basis of this understanding, one can then write, e.g., <the quantity Q> as a
shortcut for <the quantity identified by the term “Q”>. For a thorough consideration of this topic in the field of measurement, see [7].
2 See [1, 5.5.2.1]: “In a hierarchical relation, concepts are organized into levels of superordinate and subordinate concepts. For there
to be a hierarchy, there must be at least one subordinate concept below a superordinate concept.”. In the VIM3 ‘property’ is among
the undefined, and therefore “primitive”, concepts.
3 The choice of assuming ‘property’ as a primitive concept in a document as the VIM3 is a wise one, since what a property is is a fun-
damental ontological problem still object of lively discussions among philosophers (“Questions about the nature and existence of
properties are nearly as old as philosophy itself.” [11], that includes a good bibliography on the subject). Furthermore, the concept of
property seems to be not definable in terms of more primitive concepts, given the difficulty of formulating a definition for ‘property’
that does not include occurrences of terms such as “characteristic”, “attribute”, “feature”, and the like (see, e.g., the definition pro -
posed in [12]: “inherent state- or process-descriptive feature of a system including any pertinent components”). It can be noted that
the standard [13], that includes definitions for concepts such as ‘object’ and ‘concept’, uses ‘property’ but does not define it.
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characteristic being that the latter “has a magnitude”4. In its turn, the concept of quantity is specified

into ‘ordinal quantity’ and ‘quantity with unit’,5 that finally includes ‘quantity of dimension one’6 as

a specific case. These relations are presented in Figure 2.

Figure 2. ‘property’ and some of its subordinate concepts according to the VIM3.

This structure implies that such concepts are pairwise mutually exclusive: a nominal property is not

a  quantity  and  a  quantity  is  not  a  nominal  property.  Furthermore,  because  of  the  negative

connotation of ‘nominal property’ as having no magnitude, they are exhaustive: by definition, each

property is either a nominal property or a quantity. The same conclusion can be drawn for ‘ordinal

quantity’ and the undefined ‘quantity with unit’ (Dybkaer [12] uses “unitary quantity”): an ordinal

quantity is not a quantity with unit and a quantity with unit is not an ordinal quantity, and each

quantity is either ordinal or with unit.

The above mentioned philosophical perspective and the position underlying the VIM3 definitions

are clearly related: qualitative concepts correspond to nominal properties, while comparative and

quantitative concepts correspond to ordinal quantities and quantities with units respectively. In this

sense, the VIM3 builds on the tradition and, at the same time, offers a noteworthy contribution in

the development of the Maxwell’s standpoint, by embedding that philosophical position into the

metrological framework, traditionally focused on quantities with units, as witnessed by the critical

role played by measurement units in the SI [14].

The basic motivation of the present paper is the belief that the VIM3 has taken the right direction,

but also that in this evolutionary path some further steps may be done. Under the assumption that a

good foundation of measurement science requires a sound categorization of properties, the present

contribution to this path is grounded on two general claims:

-  first,  the  classification  of  properties  as  nominal,  ordinal,  and so  on,  should  be  based on the

operative features of the processes by which properties are evaluated, and only in a derived and

4 As stated by the VIM3, definition 1.1, a quantity is a property of an entity, “where the property has a magnitude that can be
expressed as a number and a reference”. According to definition 1.30, a nominal property is a property of an entity “where the
property has no magnitude”.
5 As stated by the VIM3, definition 1.26, an ordinal quantity is a “quantity, defined by a conventional measurement procedure, for
which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no
algebraic operations among those quantities exist”. Furthermore, ordinal quantities “have neither measurement units nor quantity
dimensions” [1.26 Note 1]: hence, having unit can be assumed to be the characteristic distinguishing quantities other than ordinal
from ordinal quantities. The VIM3 does not assign a term to quantities with unit : only in the concept diagram A.1 of Annex A the
term “quantity expressed by a measurement unit” appears, thus acknowledging that it refers, peculiarly, to a primitive concept.
6 As stated by the VIM3, definition 1.8, a quantity of dimension one is a “quantity for which all the exponents of the factors corre -
sponding to the base quantities in its quantity dimension are zero”. This refers to definition 1.7, according to which a quantity dimen-
sion is an “expression of the dependence of a quantity on the base quantities of a system of quantities as a product of powers of fac -
tors corresponding to the base quantities, omitting any numerical factor”.
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specific sense considered a feature of properties “in themselves”;

- second, despite of its being grounded in tradition, a structure by oppositions to define the relevant

subordinate  concepts  of ‘property’ should be complemented  with a structure  by inclusions,  and

actually derived from it.

This paper is devoted to justify these claims, in the context of a specific mathematical framework.

In synthesis, we are going to propose a primitive concept of property evaluation type, PET for short,

such that a concept of property type can be derived by the one of PET under specified conditions

(our first general claim), and different PETs are related with each other by the supertype-subtype

relation (our second general claim). As a result, a uniform solution to the four problems presented

above is obtained. The basic idea is that:

1) quantities, and specifically quantities with unit, are individual properties that can be determined

by means of procedures characterized by a given PET;

2) kinds of quantities, and specifically unitary kind of quantities, are general properties attributed to

objects on the basis of the available comparison procedures characterized by a given PET;

3) the same kind is attributed to different properties when they can be distinct with each other by

means of one of such procedures;

4) the expression Q = {Q}[Q] is generalizable as:

P = {P}[P]

where  P is the property to be evaluated and {P} is a conceptual way to identify a class within a

reference classification [P], thus under the assumption that in the general case the term {P}[P] has

to be read “{P} in reference to [P]”, not “{P} times [P]”.

Accordingly,  the  choice  of  restricting  the  scope  of  measurement  to  specific  types  is  mainly

conventional: the evolutionary path driven by the VIM3, that already departed from the Euclidean

tradition by including ordinal quantities among the measurable entities, may consistently lead to

acknowledge that property measurability is not affected by property types.

2. Preliminary analysis

2.1. The general view

The  VIM3  is  undoubtedly  a  reference  document,  if  not  the reference  document,  to  set  a

metrologically-oriented concept system on properties, and properties have been the subject of some

of the most significant changes with respect to the second edition of the VIM (VIM2, [15]). The

modifications introduced to the Maxwell’s standpoint, exclusively devoted to ratio quantities as the

sole important properties in the context of physical sciences, become apparent, for example, in the

definition of ‘quantity  value’.  Where the VIM2, definition 1.18,  has “magnitude of a particular
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quantity  generally  expressed  as  a  unit  of  measurement  multiplied  by  a  number”,  the  VIM3,

definition 1.19, states  “number and reference together expressing magnitude of a quantity”. The

important point here is the greater generality of the new definition, obtained by replacing “a unit of

measurement multiplied by a number” with the generic a “number and reference”, a condition for

including ordinal quantities, a concept outside the VIM2, among the measurable properties.

The issue is whether the conceptual framework on measurability obtained by this extension is stable

in its bases and consistent in its scope and structure: since measurability is historically associated to

quantitative concepts  only,  how  its  extension  to  comparative concepts  is  justified?  And  why

qualitative concepts are instead still outside the scope of measurement?

Several reasons highlight the importance of these questions, and among them:

- from a conceptual point of view, the VIM3, 2007-2008, has just changed a tradition 7 dating back

many centuries (consider that the VIM2, 1993, still did not include ordinal quantities in its scope):

has this historical transition been completed?

- from an operative point of view, in several fields the requirement is emerging to adopt principles

and  procedures  for  properly  assigning  values,  including  uncertainty  estimations,  to  nominal

properties: should this effort be performed inside the metrological context?

2.2. The specific view

The VIM3 assumes a  clear-cut  distinction  among the  direct  subordinate  concepts  of  ‘property’

relating to measurement, as “measurement does not apply to nominal properties” [2.1 Note 1]. The

justification of this position has at least two points worth of some analysis.

First,  while  the  necessary  condition  required  by  the  VIM3  for  measurability  is  ‘having  a

magnitude’, nothing is said about what a magnitude is. That “a magnitude [...] can be expressed as a

number and a reference” [1.1] (or, better, “expressed as a numeral and the name of a reference”, as

commented  above)  is  not  so  helpful  on  this  matter,  as  it  is  a  stipulation  (i)  related  to  how a

magnitude can be expressed, not what it is, and (ii) stated in conditional form (“can be”), not as a

requirement (“must be”). If one does not understand what a magnitude is, then the definition is not

applicable, since every property can be, in principle, expressed by means of a numeral and the name

of a reference8, and, if one does understand the concept of magnitude, then that part of the definition

is not  relevant,  since adding that  it  can be expressed in  a  particular  way is  simply useless for

determining the concept. The point here is not that some definitions refer to undefined concepts, an

unavoidable situation as far as circular definitions are not allowed and the substitution principle

7 Or has it acknowledged and embodied such change? The issue whether the VIM should drive or follow the evolution is a complex
one, also for its political implications on the role of the Joint Committee on Guides in Metrology (JCGM), and more generally of
standardization bodies, in a rapidly changing (scientific, technological, economical, social) world.
8 To assert that a property can be expressed by means of a numeral and the name of a reference does not imply that the numeral in the
expression actually denotes a number. In fact, the justification of the classification of kinds of properties introduced below is strictly
connected to the identification of criteria for determining how numerals used to represent properties are to be conceived.

5



(VIM3,  Conventions  –  Terminology  rules)  is  maintained.  Rather,  the  effort  should  be  done  to

maximize  the chance  of the  widespread understanding of such an important  subject.  The issue

whether a better characterization can be adopted then arises.9

Second, the criteria characterizing property types, i.e., their delimiting characteristics [13], remain

ambiguous if inferred from the definitions of the specific types as they are given in the VIM3: does

the type of a property depend on the way the property is measured or examined (as it is stated for

ordinal quantities, that are “defined by a conventional measurement procedure”), or is it instead a

characteristic  of  the  property  “in  itself”  (as  in  the  case  of  nominal  properties,  that  “have  no

magnitude”)? It seems that definitions should be as consistent as possible.

For the sake of generality and to avoid premature conclusions, in the following we will discuss not

only of measurement of quantities but, in a more generic sense, of evaluation of properties, where

the concept of evaluation is assumed with the customary meaning of ‘assignment of values’, and

therefore in this case ‘assignment of property values’.10 Such an evaluation will be interpreted here

in functional terms, i.e., as a process:

- that requires an entity to be examined to acquire information about a given property,

- which is then determined,

- and finally represented by a value that has to be expressed to be communicated.

These three steps – examination, determination, representation – seem to be properly designable as

“evaluation”, a term accounting for the whole process and involving the concept of determination

resulting from examination.

Our strategy will be of characterizing a concept of property evaluation type (PET), as derived from

the so-called “theory of scales of measurement”, originally introduced by S. S. Stevens [16] and

rooted in the works by H. Helmholtz [17] and O. Hölder [18]. This theory is adopted here according

to an interpretation that is quite far from the original presentation made by Stevens not only because

of  the  avoidance  of  the  term “scale”,  whose  applicability  in  the  case  of  nominal  properties  is

questionable as such concept seems to imply an ordered sequence of entities, but also, and more

relevantly, because of the mentioned crucial  choice to relate the theory itself  not specifically to

measurement, but more generically to evaluation.11

9 The hypothesis that property types can be defined with no reference to magnitudes is supported by the fact that in the French defini -
tions of the VIM3 the concept ‘property having a magnitude expressed as a number and a reference’ (definition 1.1) – a triadic rela -
tion <property, magnitude, number_and_reference> – is rendered as ‘property quantitatively expressed as a number and a reference’ –
a diadic relation <property, number_and_reference> –, also considering that the adverb “quantitatively” does not seem adding any
specific information in this case.
10 The VIM3 uses “examination” (without defining it) to designate the assignment of nominal property values. Its characterization of
property types by opposition plausibly implies that a measurement is not (a specific case of) an examination, as a nominal property is
not a quantity (on this matter the only reference in the VIM3 is a note to the definition of ‘reference material’ [5.13 Note 8]:
“ISO/REMCO has an analogous definition [45] but uses the term “measurement process” to mean ‘examination’ (ISO 15189:2007,
3.4), which covers both measurement of a quantity and examination of a nominal property.”: not a so clear standpoint, also because
referred to a different standard...). This further justifies our proposal of adopting “evaluation”.
11 While the Stevens’ theory has received several substantial criticisms, most of them are related to his claim that the theory concerns
measurement, of which he had a very general concept (“measurement is, in the broadest sense, defined as the assignment of numerals
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The choice  of  focusing  on property evaluations instead  of  properties  derives  from the  general

consideration that what characterizes a property as object of a given evaluation does not depend

only  on  the  property  “in  itself”,  but  also,  critically,  on  the  evaluation.  For  example,  length,  a

paradigmatic case of a quantity with unit, can be measured by means of a system able to acquire

only ordinal information12:  from the point of view of such an evaluation,  length behaves as an

ordinal quantity and as such its values should be dealt with in this particular case. Hence, a concept

of property type can be defined, as we will see in the following, but only in reference to the types of

its available evaluations.

The concept of PET will be formulated here in a set-theoretical framework, under the simplifying

assumption  that  uncertainties  can  be  neglected.  Given  the  starting  point  of  this  paper  –

characterizing the mutual relations among the subordinate concepts of ‘property’ – this seems to be

acceptable (the VIM3 assumes the same position, as the definitions of ‘quantity’, ‘ordinal quantity’,

and so on, are unrelated to (measurement) uncertainty).

The step-by-step discussion that follows is aimed at making the standpoint understandable in its

conceptual bases and at deriving from it the criteria required to properly characterize the relevant

PETs, so that a possible set of related definitions may be consistently formulated from the outcome

of the analysis. The next Section will introduce the preliminary concepts required to deal with PETs,

under  the  simplifying  assumption  that  evaluations  are  purely  classificatory,  i.e.,  only  nominal

properties are taken into account. The concept of PET will be built on this basis in Section 4 and

discussed in its consequences in Section 5. Because of this presentation strategy, Section 3 will deal

with  sets  and  functions  only,  that  will  be  respectively  generalized  to  relational  systems  and

morphisms in the subsequent Sections.

3. Towards a concept of property evaluation type (PET)

3.1. The conceptual framework

In agreement with the standard [1], the starting point of the analysis is the assumption that objects

are  characterized  by  individual  properties  and  classified  under  kinds  of  objects,  i.e.,  concepts

construed as units of knowledge. In their turn, concepts are characterized by kinds of properties,

under which individual properties are subsumed.13 Thus, a given mechanical object is characterized

to objects and events according to rule” [16]). As re-interpreted in this paper, the theory avoids these critical issues.
12 An example of “purely ordinal length” can be presented as follows. First of all, a set of sticks is prepared such that (i) if aligned on
one tip no two sticks have the opposite tip aligned (a nominal information), and (ii) the sticks are ordered so that each stick exceeds
the previous one if compared by means of the same procedure (an ordinal information). Then the ordinal numbers 1, 2, .., are as -
signed to the sticks as appearing in the obtained sequence. On this basis, the measurement is performed by comparing the object
whose length has to be measured with each stick in turn according to the same procedure, and identifying the pair of sticks such that
the object exceeds the first stick and does not exceed the second stick (an analogous procedure would allow calibrating the set of
sticks with respect to a given standard set). The measured quantity value could be, conventionally, either of the ordinal numbers as-
signed to such sticks, together with an identifier of the sequence of sticks and the given comparison procedure. The reader will have
noted the similarity, if not the isomorphism, of this procedure with the measurement of hardness in Mohs’ scale.
13 Some further analyses on the complex concept of kind of property / kind of quantity can be found in [12], [19] and [20].
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by its individual position and momentum and could be classified as a point mass, where the concept

of point mass is characterized by position and momentum. The diagram in Figure 3 depicts these

concepts and their relations:

Figure 3. Concepts and their relations in the adopted conceptual framework.

Accordingly, once classified under a given kind, an object can be evaluated with respect to any kind

of property characterizing its kind, i.e., property values can be assigned to represent it. Therefore,

an evaluation process can be abstractly conceived as a black box taking as input an object, that can

be called the object under evaluation,  or more specifically  the object  under measurement,14 and

producing a value as output. So conceived, the process can be modeled by a mapping:

f:A→V

from a domain A of objects to a range V of values. In this sense, the basic entities grounding the

concept of PET are such mappings f, intended as mathematical models of evaluation processes. This

modeling only assumes that:

- A is a domain of empirical objects to be evaluated with respect to a kind of property;

- V is a set of values representing the individual properties of the given kind;

- f is a function that maps objects under evaluation to values, in such a way that the assigned values

provide information on the empirical relations between the objects15 [21].

The domain of f is to be intended here as the set of objects that differently instantiate a given kind of

property, i.e., as a set of objects exhibiting differences under a given respect:

- the respect is the relevant kind of property, i.e., a general (or determinable) property;

-  the differences  are  grounded on the properties of the objects,  i.e.,  individual  (or determinate)

properties.

Hence, that a kind of property is differently instanceable is a necessary condition for evaluation.16

14 Hence an object is here what the VIM3 calls a “phenomenon, body, or substance” [1.1]. We are using this term in a general sense as
referring to objects and processes, both physical and social ones, that are accessible from an intersubjective point of view.
15 Note that the last step of expressing values in a suitable symbolic form is not taken into account here, for its purely linguistic nature
and its lack of modeling implications.
16 The distinction between quantities in general sense, i.e., general quantities or kinds of quantities, and quantities in particular sense,
i.e., particular or individual quantities, is well known in metrology (see, e.g., [22] p. 30 and [23] pp. 65-67). A generalization of this
distinction to properties is proposed here.

A philosophical issue arises here, as the distinction between individual and general properties should not be confused with
the distinction between particular and universal properties. Hence: is the property of an object to be interpreted as an universal or a
particular entity? For example, the assertion that two objects can have the same length, or the same shape, can be interpreted in either
of two ways: (i) there is just one length, a universal one, that characterizes both objects; (ii) there is a length, a particular one, that
characterizes one object, and such length is perfectly indistinguishable from the length of the other object. In compliance with a com -
mon conceptualization and terminology in measurement science (see, once again, for example [22] and [23]), we opt to consider both
individual and general properties as universals, possibly characterizing many objects. In this sense, an individual property is just the
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Note that the involved kind of property could be, in principle, the very property of interacting with

the instruments used to perform the evaluation process. Thus, the fact that  f  is the model of an

empirical evaluation applied to a domain determined by a certain kind of property is consistent with

the option that A is determined in the definition of the function f itself. In this sense, the domain A

could simply be defined as the set of the objects to which the evaluation process can be empirically

applied.17

3.2. The mathematical framework

A few elementary results of function theory can be helpfully recalled to better highlight how an

evaluation process can be modeled by means of a function.

-  Any  function  f:A→V  induces  an  equivalence  relation,  and  thus  a  partition,  i.e.,  a  set  of

equivalence  classes,  on its  domain A, such that  any two elements  ai,  ajA belong to the same

equivalence class,  ai ≈f aj, if and only if they are indistinguishable with respect to  f, i.e., they are

evaluated in the same way, f(ai) = f(aj). As a consequence, the equivalence relation ≈f can be thought

of as meaning, trivially, “having the same value according to f”.18 The set of equivalence classes is

called the quotient set of A under f and is customarily denoted as A/≈f.

- Any function  f:A→V can be viewed as the composition of two functions: a surjective function

f:A→A/≈f,  mapping elements  of  A onto equivalence  classes  in  A/≈f,  and  an injective  function

f:A/≈f→V, mapping such classes into the set V: hence, this composition is such that f(a) = f(f(a)).

As a consequence, the value  v assigned to an object  a by  f can be obtained by mapping  a to its

equivalence class [a] = f(a) and then such class to the value v = f([a]) = f(f(a)) that is assigned,

by means of f, to all objects belonging to the class itself.

The diagram in Figure 4 depicts this concept.

Figure 4. Basic algebraic structure of an evaluation process.

Under the mentioned assumption that  f is intended to model an empirical evaluation process, the

two functions  f and  f composing  the  function  f can  be  meaningfully  interpreted  in  terms  of

most determinate, but still universal, property of an individual object.
17 As a consequence, this conceptual framework is compatible with both an objective standpoint, according to which properties and
their kinds are intrinsic characteristics of the object to be evaluated, and an operative standpoint, according to which properties and
their kinds are instead partially or totally determined by the evaluation processes that are concretely applied.
18 Were uncertainty taken into account, the relation corresponding to the application of the function f  would not be, in general, an
equivalence, since its transitivity would not be guaranteed. This is a fundamental reason of the complexity of any formalization of
uncertain evaluations.
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components of the process itself:

-  an  experimental component,  corresponding  to  f,  that  consists  in  the  determination of  the

equivalence class which a given empirical object belongs to, as typically obtained by comparison

among objects19;

- a representational component, corresponding to f, that consists in the assignment of a value from

V to the determined equivalence class.

The representational  component  f must  preserve the information  acquired  by the experimental

component f. This is guaranteed by the injectivity of f: distinct equivalence classes are represented

by different values. Accordingly, the only constraint on the existence of f is on the cardinality of V,

that must have enough elements to represent all equivalence classes: card(V)  card(A/≈f). On the

other hand, the acquired information on [a] is preserved not only by f([a]), but also by any function

(f([a])), where :V→V is a 1-1 transformation, i.e., a permutation of V. Values are then assigned

“up to a  group of transformations” G,20 that  can be called an  evaluation transformation group.

Evaluations fi of objects in A can be then clustered in sets F={fi}, where:

- all fi belonging to the same set F determine the same experimental component of the evaluation;

-  the assignment  of values  performed by each  fi can be also obtained by any other  mapping  fj

belonging to the same set F by applying a suitable transformation τ in the transformation group

associated to F.

Hence, a set F is uniquely determined by a transformation group G such that F = {fi•τ  fiF, τG}.

The diagram in Figure 5 depicts this concept.

Figure 5. Evaluation as determined up to a transformation.

Each empirical  evaluation  process  f can  be conceived as  the  operative  realization  of  a  general

property (such as shape or length), that can be indeed interpreted as a mapping from objects  a to

property values f(a) = v, as for shape(this_table) = rectangle. Accordingly, in the following we will

sometimes adopt the overloaded denotation “the evaluation f” and “the general property f” for short,

while acknowledging that the same general property can be evaluated by different processes, and

19 It is precisely in this sense, we believe, that the VIM3 states that measurement is an experimental process [2.1], and that it “implies
comparison of quantities” [2.1 N.2], an elliptical expression for “comparison of objects with respect to a general quantity”. Indeed,
measurement is based on comparison, as formalized by the function f, but it does not entirely consists of such comparison, as the
function f must also be applied. Hence, comparison is necessary but not sufficient for measurement.
20 As a typical example of transformation in the group G, consider the (scale) transformation due to a change of unit, e.g. from meter
to inch, in the case of length. That the structure of the set of such transformations is a group can be easily shown: (i) the composition
of any two transformations is a transformation (closure); (ii) the order in which any three transformations is applied does not change
the resulting transformation (associativity); (iii) there exists the identity transformation (identity element); (iv) since transformations
are bijective, for each of them an inverse transformation exists (inverse element).
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therefore  that  any  specific  evaluation  is  generally  only  a  partial  counterpart  of  that  general

property.21

This interpretation leads to a better understanding of the equivalence relation ≈f. If what f evaluates

is a general property, then such equivalence is in fact an f-related equivalence: the fact that two

objects are mapped to the same equivalence class models that they “have the same property”, as in a

sentence  such  as  “a1 and  a2 have  the  same  shape”.  Of  course,  this  relation  of  sameness,  or

equivalence, does not apply to general properties, but to their instances to given objects. Indeed, the

previous sentence implies that:

- the existence of the entities ‘the shape of a1’ and ‘the shape of a2’ is assumed, and

- such entities are indistinguishable with respect to the comparison process under consideration.

Following the VIM3 (note 1 to definition 1.1), the entities obtained by instancing a general property

(such as  shape)  for  a  given object  (such as  the  shape  of  this  object)  can  be  called  individual

properties.  Accordingly,  the  equivalence  relation  ≈f stands  for  “having  equivalent  individual

properties”.

3.3. Measurement as evaluation process

The two components of an evaluation process, modeled by the mappings f and f, can be further

analyzed as follows. The experimental component  f is based on a comparison process aimed at

determining the equivalence relation ≈f. Such result can be obtained in different ways, due to the

possibility of comparing objects:

- either relatively to the general property f (direct comparison, as in the case of two-pan balance) or

to  a  different  property,  connected  with  f by  means  of  a  transduction  effect  that  is  possibly

formalized by a law (indirect comparison, as in the case of dynamometer);

- either with each other (internal comparison, as in the case in which a two-pan balance or an

uncalibrated dynamometer, whose scale has no marks, are used to compare two objects of unknown

weigh to determine whether their weights are the same) or with given reference entities (reference

comparison, as in the case a two-pan balance is used to compare an object of unknown weight and a

standard, the standard itself operating as a reference object, or in the case an indication is obtained

by applying an object of unknown weight to a calibrated dynamometer, the indication operating as a

reference state).22

These options are synthesized in Table 1.

Table 1. Options about how a comparison process can be performed.

21 This position can be characterized as a weakly operational one, contrasting to the strict operationalism that identifies properties and
evaluation procedures: “we mean by any concept nothing more than a set of operations; the concept is synonymous with the corre -
sponding set of operations” [24].
22 In [25] these reference entities are characterized as the “selectable states” of the coupled system: object under measurement + mea -
suring system. References can be indeed either objects or states: while in the first case the notation a ≈f r is correct, in the second one
it must be understood as a shortcut. Just for the sake of simplicity we will assume that references are objects henceforth.
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Is a reference object involved in the comparison?

no yes

Is the property transduced
before comparison?

no direct internal comparison direct reference comparison
yes indirect internal comparison indirect reference comparison

While a generic evaluation can be based on all four combinations of comparisons, measurement is

performed as (direct or indirect) reference comparison (right-hand column options in Table 1), as it

requires the measuring system to be calibrated with respect to a standard, whose property value is

assumed to be known. Hence, in this case (we are still neglecting uncertainty) the process aimed at

assigning  the  property  value  v = f(a)  can  be  understood  as  implying  (1)  the  construction  of  a

reference and (2) the application of the constructed reference, according to four steps:

1. Construction of a reference

 Step 1.1: the  selection  of  a  set  of  reference  objects  is  performed in four stages:  (i)  the

definition of a set of reference objects R = {r1, r2, …} for the domain A; (ii) the definition of

a comparison procedure such that for each object a in A one and only one reference r can be

determined such that a ≈f  r; (iii) the definition of a way to produce sets of reference objects

that fit the definition; (iv) the choice of a concrete set of reference objects. As a consequence

of (i) and (ii), R is required to be complete (for all elements a in the set A at least one r exists

in R such that a ≈f  r) and minimal (for all elements a in the setA at most one r exists in R

such that a ≈f r) with respect to A and the given reference comparison procedure23.

 Step 1.2: a property value vi is associated with each ri, under the condition that the mapping

is injective, i.e., distinct references are mapped to distinct property values; this mapping can

be modeled as a representation function fR:R→V.

2. Application of the reference

 Step 2.1: an object a is compared with the references in R and the reference r is determined

such that a ≈f  r; the completeness and minimality of R guarantee that r exists and is unique;

hence, this comparison can be modeled as a comparison function fC:A→R, such that fC(a) =

r if and only if a ≈f r.

 Step 2.2: the property value v = f(a) is assigned such that f(a) = fR(fC(a)); the injectivity of fR

guarantees that distinct values are assigned to distinct objects.

The diagram in Figure 6 depicts this concept.

23 The construction of a set of reference objects can be equivalently referred to as the construction of a set of reference properties of a
given kind, namely the individual properties that characterize the objects. In the same vein, the comparison procedure can be viewed
as a procedure that compares individual properties instead of objects. The present account is focused on objects instead of properties
because (i) an individual property can only be identified as the property of a given object, (ii) properties can only be compared by
comparing the objects they characterize, and (iii) the only way to specify how to produce a set of reference properties is to specify
how to produce a set of reference objects instantiating them. Given the previous proviso, the concepts of reference property and refer -
ence object can be interchanged.
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Figure 6. Basic structure of a measurement process: comparison + representation.

By merging  the  diagrams  in  Figures  4  and  6  we  are  led  to  a  justification  of  the  claim  that

measurement is a specific case of evaluation, as in Figure 7.

Figure 7. Structure of measurement as a specific case of evaluation.

Indeed:

- generic evaluation is (explicitly or implicitly) based on a comparison leading to map objects to

equivalence classes, so that the property value v = f(a) is obtained by f(a) = f(f(a)) (outer triangle);

- measurement is instead specifically based on (direct or indirect) reference comparison, so that the

property value v = f(a) is obtained by f(a) = fR(fC(a)) (inner triangle).

The  conditions  of  completeness  and  minimality  on  R  imply  that  the  classification function

fK:R→A/≈f such that fK(r) = {aA  fC(a) = r} is bijective. fK models the operation of embedding each

reference r into the equivalence class fK(r), so that r can be thought of as a “representative entity”

for fK(r). This highlights that the determination of the equivalence of objects through references is a

specialized version of the generic determination of their equivalence with respect to the general

property f, i.e., by means of f.

3.4. A synthesis

Since  any evaluation process, as far as it can be modeled by a function  f, can be decomposed as

f(a) = f(f(a)), then:

evaluating = comparing + representing

(experimental component) + (representational component)

where  the  representational  component  is  definable  before  performing  any  specific  evaluation

process  and therefore  is  a  priori24,  while  the  experimental  component  is,  in  the  same sense,  a

posteriori. The conclusion is analogous in the case of reference comparison, where fC and fR are in

fact specialized versions of f and f respectively. This can be interpreted in terms of the functional

24 The representational component is a priori and still not completely conventional, since the choice of the target structure into which
the domain is represented is constrained by the requisite of preserving the relations identified by comparison. As just mentioned, such
component can be defined before performing any specific evaluation process but its definition is a critical part of the definition of the
evaluation procedure.
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relations between calibration and measurement:

- at first (= a priori) the measuring system is calibrated, i.e., the representational component is set up

by identifying the reference associated with each realizable property value; this corresponds to the

pointwise operative construction of the function fR
1 (Steps 1.1 and 1.2 above);

- then measurement is performed, i.e., the experimental component is operated, thus determining

r = fC(a),  and its  result  is represented by means of calibration information,  i.e.,  by inverting  fR
1

(Steps 2.1 and 2.2).25

This structure leads to some insights about the very concept of property and its multiple subtle

meanings,  and in  particular  it  leads  to  the  possible  parallel  interpretation  of  the  entities  in  the

diagram in Figure 7 as either objects or properties, as follows.

Any evaluation procedure requires the specification of an intended domain A by means of a given

general property. The domain includes objects  that in principle could be evaluated according to

several evaluation procedures. The general property, e.g. shape, considered of an object corresponds

to an individual property, such as the shape of the object a. For a given comparison procedure, the

individual property of  a can be indistinguishable from individual properties characterizing other

objects  in A. The equivalence class [a]  that  is  obtained by the application of the classification

function fK corresponds then to the one individual property, such as a given shape, that in principle

can be possessed by different objects. Finally, any property value has the role of the representative

of an individual property as obtained by fR and f respectively.

The diagrams in Figure 8 interpret the one in Figure 7 and highlight this parallelism.

Figure 8. Interpretation of measurement in terms of objects (left) and properties (right).

In this sense, a property value, as an element of V, represents an individual property by identifying

it  within  V. The  basic  formula  of  quantity  calculus  Q = {Q}[Q]  can  be  then  reinterpreted:  the

quantity value {Q}[Q] represents the individual quantity  Q because {Q} is the concept of a class

25 This structure gives a simple explanation of the, somehow controversial, definition of ‘calibration’ introduced in the VIM3 (defini -
tion 2.39): “operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measure -
ment uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties
and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication”. As far as
uncertainties are neglected, the first step corresponds to the construction of fR

1 and the second one to the application of its inverse fR.
This also shows why “often, the first step alone in the above definition is perceived as being calibration” [2.39 Note 3]: the applica -
tion of fR is indeed the representational component of measurement, that is a priori with respect to the experimental component. In
these terms, that measurement is modeled by fC alone or by the combination of fC and fR is clearly a conventional issue.
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within the classification given by (a subset of) the real numbers and completely specified by the unit

[Q].  This  can  be  immediately  and  consistently  generalized  to  generic  properties:  the  formula

P = {P}[P] states that the individual property P is represented by the property value {P}[P], where

[P]  is  a  given classification  and {P}  is  the  concept  of  a  class  belonging  to  [P]  and therefore

operating as a selector in it.

3.5. Example: galaxy classification

The results of the previous analysis can be exemplified by the procedure to classify galaxies on the

basis  of  the  Hubble  sequence,  i.e.,  according to  a  set  of  reference  shapes  matching  the  visual

appearance of galaxies. A partial outline of the Hubble sequence is as in Figure 9:

Figure 9. Partial outline of the Hubble sequence.

The Hubble  sequence  divides  galaxies  into  three  major  groups  based  on their  apparent  shape,

constituted by approximately elliptical (E), spiral (S), and barred spiral galaxies (SB) respectively.

In spite of its  descriptive basis, this  scheme provides not only a classification but,  within each

group, also an ordering of the galaxies according to their relative shapes. For example, in the group

E galaxies are ordered in virtue of the eccentricity of their shape. The definition of the Hubble

sequence corresponds to the choice of the set of reference objects and their associated values, as

presented in Steps 1 and 2 above, where the representation function fR is defined extensionally by

the one-to-one correspondence sketched in the partial  outline of the Hubble sequence shown in

Figure 9, being {E0,E3,E7,S0,Sa,Sb,Sc,SBa,SBb,SBc} the set V of property values.

On this  basis,  the  classification  and  ordering  process  is  based  on the  comparison  between the

apparent shape of a candidate galaxy a and the reference shapes in the sequence, such comparison

process being simply specified as:

1) take the candidate galaxy a;

2) identify among the reference shapes in the Hubble sequence the one most similar to a.

Hence, the comparison function fC induces both a partition on the domain A of observable galaxies

(the equivalence relation being defined as ai ≈f aj if and only if the reference shapes of ai and aj are

the same) and a total ordering within each group (the order relation for the group E being defined as
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ai <f aj if and only if the reference shape of ai is less eccentric than the one of aj).

3.6. An ontological note

The  concept  of  evaluation  analyzed  so  far  is  critically  based  on  the  possibility  to  determine

equivalence  relations  ≈f.  Hence,  their  ontological  status  is  worth  of  some  consideration.  Four

options can be taken into account.

-  Option  1:  relations  ≈f are  induced  by  evaluations  f.  Objects  are  mapped  to  property  values

independently of any a priori condition on the structure of A, so that in principle such structure

could exist only a posteriori with respect to the evaluation: objects mapped to the same value are

assumed to be equivalent for the evaluated general property. In synthesis: since  f(ai) = f(aj), then

ai ≈f aj.

- Option 2: relations ≈f are determinate independently of any evaluation f. Objects are assumed to be

provided with individual properties independently of the application of any evaluation procedure:

objects that are equivalent with respect to the given general property must be included in the same

equivalence class and thus mapped to the same value. In synthesis: since ai ≈f aj, then f(ai) = f(aj).

- Option 3: relations ≈f are induced by the experimental component  f of evaluations. Objects are

provided with individual properties by the application of the internal comparison procedure related

to f: objects that are mapped to the same equivalence class (i.e., that are equivalent according to the

given comparison procedure) are mapped to the same value. In synthesis: since f(ai) = f(aj), then

f(ai) = f(aj).

-  Option  4:  relations  ≈f are  induced  by the  comparison  function  fC of  evaluations.  Objects  are

provided  with  individual  properties  by  the  application  of  the  reference  comparison  procedure

related to fC: objects that are mapped to the same reference entity (i.e., that are equivalent according

to the given reference comparison procedure) are mapped to the same value. In synthesis: since

ai ≈f r and aj ≈f r, and therefore fC(ai) = fC(aj), then f(ai) = f(aj).

These options correspond to different overall interpretations of the diagram in Figure 7.

Options 1 and 2 focus on the mapping A→V, while neglecting the relevance of the whole structure.

They basically imply inverse standpoints: Option 1 has basically no assumptions on A, but it is

unable to justify why the values assigned to objects are to represent individual properties. On the

other hand, Option 2 requires individual properties to be determinate as such, independently of any

empirical process of interaction with objects. Options 3 and 4 acknowledge instead that empirical

evaluations  are  structured  procedures,  generically  based  on  comparison,  as  in  Option  3,  or

specifically on reference comparison, as in Option 4. These options are synthesized in Table 2.

Table 2. Ontological options on the role of the evaluation.
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Option The evaluation:

1: since f(ai) = f(aj), then ai ≈f aj induces the relations

2: since ai ≈f aj, then f(ai) = f(aj) preserves the relations

3: since f(ai) = f(aj), then f(ai) = f(aj) determines the relations by generic comparison

4: since ai ≈f r and ai ≈f r (then fC(ai) = fC(aj)), then f(ai) = f(aj) determines the relations by reference comparison

The following analysis on PETs can be based on the ontologically less demanding Options 3 and 4,

but is also consistent with Option 2. While Options 3 and 4 more clearly highlight the role that

evaluation  processes  play  in  providing  information  about  domains,  Option  2  more  intuitively

understands the ontological grounds of relations ≈f.

4. Property evaluation types

As discussed above, the evaluation  f of a general property on the objects of a domain A implies

determining the equivalence relation ≈f, “having equivalent individual properties”, on A. It is a fact

that sometimes together with ≈f other relations are empirically meaningful on A. For example, an

empirical relation of total order <f, interpreted as “having an individual property less than another

individual property”, could be determined. In such cases, the further relations on A have to be in

principle compatible with the equivalence relation ≈f. In the case of <f this means that the empirical

order is preserved among equivalence classes, i.e.,  for all  ai,  aj,  akA, if  ai ≈f aj and  ai <f ak then

aj <f ak, thus making ≈f a congruence in the structure A = (A, ≈f, <f), that is determined by f on A. As

further relations are possibly determined by the evaluation, a richer and richer algebraic structure is

assumed on A and the set of property values V is correspondingly modified into a structure  V to

preserve the structural  information  that can be empirically  acquired (we are adopting the usual

notational convention of denoting a structure with a bold symbol, e.g., A, and its domains with the

corresponding roman symbol, e.g., A).

The concept of  information consistency  for an evaluation  f is fundamental here: a property value

f(a) must convey all and only the information empirically available on the structure  A.26 This is

expressed by means of two complementary conditions. The evaluation f is consistently informative

if and only if:

1) for each empirical relation in  A there is a represented relation in  V such that  f preserves all

relation instances; this guarantees that the information empirically acquired is maintained by the

representational component of the evaluation;

2) V includes only relations that represent empirical relations in A in the sense of the first condition;

this guarantees that the information conveyed by property values is actually representative of the

information acquired by the experimental component of the evaluation.

26 Of course, this concept of information consistency is empty if Option 1 in Section 3.6 is assumed.
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For example, if ai <f aj (e.g., ai is shorter than aj) then f is consistently informative only if V includes

an order relation < such that f(ai) < f(aj) (the length value f(ai) assigned to ai is less than the length

value f(aj) assigned to aj). Furthermore, under the assumption that the evaluation is only ordinal, f is

consistently informative only if V includes the relation < but, in particular, not the operation +.

The  two  conditions  of  information  consistency  are  easily  specified  in  the  case  the  evaluation

procedure is based on reference comparison, and therefore specifically in the case of measurement.

The critical role is played here by the reference set, that is assumed to be a structure R such that,

e.g., R = (R, <f). It is indeed the comparison function fC that guarantees the information consistency,

and induces the structure of R on A. As a consequence, in the specific case of measurement the

empirical relations on A are not required to be directly observable, as they result from the following

inference: for all ai, ajA, if fC(ai) = ri and fC(aj) = rj and ri <f rj then ai <f aj.27

The mentioned conditions imply that any evaluation  f is a homomorphism from  A to  V.  In the

example of (purely ordinal) lengths, in which f maps (A, ≈f, <f) to the ordered set of non-negative

real numbers), this is equivalent to the constraint that any f is an isomorphism from A/≈f = (A/≈f,

<f/≈f)  into  the  ordered  set  of  non-negative  real  numbers.  These  morphisms are  invariant  under

transformations τ in the transformation group G, i.e., if  f is a homomorphism, then also f = f•τ is a

homomorphism,  and  if  f is  a  isomorphism,  then  also  f = f•τ  is  an  isomorphism.  This  simply

formalizes that facts such as  ai is shorter than  aj are independent of the assigned property values,

and therefore in particular of the unit, as the property representation does not affect the instance

ai <f aj of  the  empirical  relation  <f .  In  other  terms,  the  ‘less  than’ empirical  relation  has  to  be

invariant under the transformations τG.

The diagram in Figure 10 depicts this concept, and generalizes the diagram in Figure 7 by assuming

that all graph nodes are relational systems and all arrows are morphisms.

Figure 10. Algebraic structure of measurement as a specific case of evaluation.

Since not any transformation τ fulfills this invariance condition, G shall only include the admissible

transformations, i.e., the transformations under which the relevant empirical relations are preserved.

27 This  is  a  major  difference  between  the  standpoint  presented  here  and  the  already  mentioned  representational  theories  of
measurement, that instead assume the direct observability of the empirical relations on A, and from it develop a concept of empirical
meaningfulness ([26, 27]). From this point of view, our claim is that a more appropriate term would be “representational theories of
evaluation”, as they formalize unstructured morphic mappings (i.e., Option 2 in Section 3.6), not reference comparison (inner triangle
in Figures 7 and 8, i.e., Option 4). This argument also justifies the apparent lack of interest that representational theories deserve to
calibration.
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Thus, for example, if ai <f aj then the guarantee that f(ai) < f(aj) for all fF is obtained by requiring

that the transformations in G preserve the order <f, and therefore that they are strictly monotonic.

Hence, the structure of the group of transformations that are permissible according to this condition

of invariance determines a classification on the set of property evaluations, such that  each class

corresponds to a “type”: a property evaluation type (PET).

4.1. The basic PETs

Let us consider the two extreme cases:

- on the one hand,  f is unconstrained, i.e.,  the transformation group G contains all the injective

mappings V→V. This is the case of evaluations performed by simply classifying the objects in A, as

analyzed in Section 3, so that having the same individual property means only being equivalent

according  ≈f,  i.e.,  belonging  to  the  same  ≈f-equivalence  class.  The  corresponding  type  is

customarily called the nominal (customary alternative terms are “classificatory” and “qualitative”)

type;

- on the other hand, f is unique, i.e., the only transformation contained in G is the identity. This is

the  case  of  evaluations  performed  by  counting  predefined  objects,  so  that  having  the  same

individual  property means having the same number of such objects.  The corresponding type is

customarily called the absolute type.

On this basis the types introduced in [16] can be schematically characterized as in Table 3.

Table 3. Basic PETs (adapted from [16]).

Type Admissible transformations τ Conditions of invariance Features

nominal injective transformations:
if v1v2 then τ(v1)τ(v2)

preservation of
equivalence classes

classifications

ordinal monotonic transformations:
if v1<v2 then τ(v1)<τ(v2)

preservation
of order

orderings

interval linear transformations:
τ(v)=k1v+k2, k1>0

preservation of ratios of distances:
(τ(v2)τ(v1))/(v2v1) = k1

numerical mappings without a
“natural zero” and a “natural unit”

ratio similarity transformations:
τ(v)=kv, k>0

preservation of ratios:
τ(v)/v = k

numerical mappings with a “natural
zero” but without a “natural unit”

absolute identity transformations:
τ(v)=v

preservation of values numerical mappings with a “natural
zero” and a “natural unit”

If read from top to bottom, this table lists more and more constrained types in their invariance

conditions.  If  interpreted in  reference to the same property, the transition from one type to  the

following, more constrained, one corresponds to an increase of information that is assumed to be

conveyed by property values, on the basis of the requirement that such information is preserved by

the evaluation, i.e., that the evaluation itself is consistently informative. For example, considering

the case of temperature:
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- a nominal evaluation leads to assess whether two objects belong to the same equivalence class or

not, i.e., they have the same temperature or not; in this case, property values are only required to be

distinct  for  objects  with  different  temperature,  a  constraint  that  is  fulfilled  by  any  injective

transformation;

- if the information is added on the empirical meaningfulness of an ordering among the equivalence

classes, an  ordinal evaluation is obtained, allowing to assess also whether the temperature of an

object is greater than the temperature of another one; for such ordering to be expressed by property

values,  they  must  preserve  the  order,  a  constraint  that  is  fulfilled  by  any  strictly  monotonic

transformation;

- if the information is added on the empirical meaningfulness of a distance / difference among the

equivalence  classes,  an  interval evaluation  is  obtained,  allowing  to  assess  also  how much  the

difference of the temperature of two objects is greater than the difference of the temperature of two

other objects; this is the case of temperature evaluated in Celsius or Fahrenheit degrees, for which

the  value  (v1−v2)/(v3− v4)  is  invariant  under  scale  transformations,  as  formalized  by  the  linear

transformations τ(v)=k1v+k2;

- if the information is added on the empirical meaningfulness of a “zero” equivalence class, a ratio

evaluation is obtained, allowing to assess also how much the temperature of an object is greater

than the temperature of another one; this is the case of Kelvin and Rankine scales, for which the

value v1/v2 is invariant under scale transformation, as formalized by the similarity transformations

τ(v)=kv;

- if  the information is added on the empirical meaningfulness of a “unit” equivalence class, an

absolute evaluation would be obtained: since no “natural” unit for temperatures has been defined

yet (1 K can be hardly said to be “more natural” than, e.g., 1 R), the possibility of an absolute

evaluation for temperatures is currently unknown / unavailable.

This sequence of transitions can be easily rephrased in terms of references instead of equivalence

classes, thus adapting it to measurement (in this case the condition of nominal PET coincide with

the requirements of completeness and minimality of references, as introduced in Section 3.3, so that

by definition each measurement is at least nominal). This highlights once more that the concept of

type  unsurprisingly  applies  more  to  property  evaluations  than  to  properties  “in  themselves”,

whatever this could mean, since the same property can be evaluated by means of evaluations of

different type. The sequence in Table 3 also shows that the PETs can be compared with each other

in terms of the degree of structural  information  conveyed by property values,  so that,  e.g.,  the

absolute type can be said structurally richer than the ratio one, and so on.28 Furthermore, structural
28 This relation of structural richness among PETs should not be confused with a relation based on the quantity of information (in the
sense of the Shannon’s theory of communication [28]) conveyed by property values, which is instead related to evaluation / measure-
ment resolution and is independent of any structural requirements.
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richness varies inversely to the size of the transformation group G associated with the evaluation, so

that the type Ti is structurally richer than the type Tj when the group associated with Ti is included in

the group associated to Tj.

4.2. A justification of the basic PETs

As presented in [16], the basic PETs are introduced on an ad hoc basis, and no formal justification is

given of the implicit  assumption that they cover all “interesting cases” of evaluation,  and more

specifically of measurement. Such a justification can be found, once more, in the relation that links

the  set  F = {fi}  and  the  transformation  group  G  that  specifies  how  the  evaluations  fi can  be

transformed to each other, in terms of the following two concepts (see [29] and [27]).

- The set F = {fi} is defined to be m-point homogeneous, for m=1, 2, ..., if and only if for all pairs of

strictly ordered sequences  v1<...<vm and  w1<...<wm of  m elements of the target structure  V there

exists  a  transformation  τ  in  the  transformation  group  G  such  that  τ(vi) = wi for  i=1,  ...,  m.

Furthermore,  F is  defined  to  be  -point  homogeneous  if  it  is  m-point  homogeneous  for  every

natural number m. Then ratio evaluations are 1-point homogeneous but not 2-point homogeneous,

interval evaluations are 1-point and 2-point homogeneous but not 3-point homogeneous, and ordinal

and nominal evaluations are -point homogeneous.

- The set  F = {fi} is  defined to be  n-point unique,  for  n=1, 2, ...,  if  and only if,  given any two

functions fi, fjF, if fi  and fj agree at n distinct elements of their image then fi = fj. Furthermore, F is

defined to be  -point unique if it  is  n-point unique for every natural number  n.  Then absolute

evaluations are 0-point unique, ratio evaluations are 1-point unique, interval evaluations are 2-point

unique, and ordinal evaluations are -point unique.

A PET can be then characterized by the maximum degree of homogeneity, m*, and the minimum

degree of uniqueness, n*, of its set F. It can be shown that, under suitable conditions,  m*n* and

that  if  0<m*n* then the only possible  cases are  n* = 1 or  n* = 2,  so that  the only possible

degrees are (1,1), (1,2), (2,2), (m*,). Accordingly, it can be proved that a PET is:

1) ratio if and only if it is of degree (1,1);

2) interval if and only if it is of degree (2,2);

3) ordinal if and only if it is of degree (,);

4) nominal if the concepts of homogeneity and uniqueness do not apply.

This shows that basic PETs are classified by their degrees of homogeneity and uniqueness. Under

rather general assumptions, it can be shown that the PETs listed in Table 3 are the most significant

ones.

21



4.3. A metrological re-analysis of PETs

The characterization of PETs in terms of the invariance structure of the property value set V, as

formalized by the transformation group G, is a consequence of the conceptual path followed by

Stevens, aimed at encompassing in a single framework both “hard” and “soft” measurement, and

therefore  forced  to  the  very  generic  definition:  “assignment  of  numerals  to  objects  and events

according to rule” [16]. Stevens’ interests were indeed focused on the connections between the rules

for the assignment of numerals,  the mathematical  structure of the obtained scale types, and the

statistical operations permissible with respect to such types, as presented in Table 4.

Table 4. PETs and permissible statistics (adapted from [16]).

Type Permissible statistics

nominal number of cases, mode, contingency correlation

ordinal median, percentiles

interval mean, standard deviation, rank-order correlation, product-moment correlation

ratio coefficient of variation

Hence, since scale types are possible only because there is a certain isomorphism between the basic

empirical  operations  performed on aspects  of  objects  and the  properties  of  the  numeral  series,

Stevens concluded that scale types are dependent upon the specificity of the empirical operations

performed on aspects  of  objects.  In  this  sense,  the  possibility  is  open to  differentiate  between

property evaluation types, connected to the set of admissible mathematical operation on the set V of

property values, and property evaluation procedures, connected to the set of admissible empirical

operation on the set of objects under evaluation. In particular, for evaluating a property according to

a given type is not necessary that every operation that can be performed on V has an empirical

correspondence in an operation performed on A 29.

Let  us take  into account  two examples  of ratio  evaluations:  absolute  temperatures  and masses.

While their PET description is the same (both are modeled as numerical mappings that preserve

ratios,  with  a  “natural  zero”  and  without  a  “natural  unit”),  such  general  properties  exhibit  a

significant metrological difference: objects can be additively composed with respect to mass, but

they cannot with respect to temperature (temperature is not so peculiar in this: the same applies,

e.g., to density). As a consequence, a reference set for mass can be constructed by choosing a unit

object and then iteratively applying the additive operation, i.e., juxtaposition in this case, whereas

this  strategy fails  in the case of temperatures.  The point  is  not that  the type of either  mass or

29 We thank an anonymous referee for having directed our attention to this point by highlighting the need of a sharper distinction be -
tween the conditions that characterize an evaluation type and those characterizing an evaluation procedure. As a consequence, the
conditions on V to be introduced to characterize a measurement scale are not to be confused with the conditions on A to construct the
measurement scale. Hence, the question as to whether invariance conditions are sufficient to characterize measurement scales has to
be answered positively, provided that measurement scales are interpreted as evaluation types and not as evaluation procedures.
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temperature evaluation should be revised, but that it is unable to maintain this distinction between

additive and non-additive mappings. Hence the issue arises: should PETs be further specified?

The evaluation  type  of  thermodynamic  temperature  is  ratio,  despite  of  the  lack  of  an  additive

operation, because a relation is known between thermodynamic temperature and a ratio-evaluated

general property, length, such that temperature values are obtained from length values through a

transduction effect and the proper calibration of the instrument that realizes such effect. While this

example  corresponds  to  the  traditional,  and  well  known,  distinction  between  “extensive”  and

“intensive” quantities (that however remains hidden in the Stevens’ framework), the result is clearly

a general one, and it appears to be a feature of property evaluations: the same PET can include both

homomorphisms and evaluations  that  only  indirectly  operate  as  homomorphisms.  Some further

examples  are,  for  interval  PET, calendar  dates  (direct,  additive)  and thermometric  temperatures

(indirect,  non-additive),  and,  for  ordinal  PET, Mohs hardness  (direct)  and Beaufort  wind scale

(indirect).

As far as the metrological structure is taken into account, each PET can be split then into two sub-

PETs, including respectively:

- direct evaluations, i.e., mappings that preserve the empirical relations / operations assumed to be

applicable between objects in A, or between objects in A and references in R; if  f is one of such

empirical relations (here and in the following assumed binary and between objects in A just for

simplicity of notation), and  is the corresponding relation in V, then a direct evaluation f is such

that:

if f(a1,a2) then (f(a1),f(a2))

i.e., f homomorphically maps the objects in A to property values, such that, e.g., if a2 is longer than

a1 then the length value assigned to a2 must be greater than the one assigned to a1;

- indirect evaluations, i.e., mappings obtained via another homomorphic mapping g; in this case the

evaluation is based on a more complex, inferential structure, as follows:

if f(a1,a2) then g(a1,a2)

(e.g., if a2 is warmer than a1 then a2 is longer than a1, or an object obtained by transduction from a2

is longer than an object obtained by transduction from a1)

then (g(a1),g(a2))

(the length value assigned to a2 must be greater than the length value assigned to a1)

then (f(a1),f(a2))

(the temperature value assigned to a2 must be greater than the temperature value assigned to a1).

For this inference to be correctly performed two conditions must hold:

1.  an  empirical  relation  is  known  between  the  general  properties  f and  g,  such  that
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f(a1,a2) → g(a1,a2) is valid;

2.  when  represented  by  property  values,  such  empirical  relation  can  be  inverted,  i.e.,

(g(a1),g(a2)) → (f(a1),f(a2)) is valid.

The diagram in Figure 11 synthesizes the structure of this inference:

Figure 11. Structure of an indirect evaluation.

Indirect evaluations  can be applied in the case the relation  f(a1,a2) is not observed, or is  even

hypothetical. Let us take the example of f(a1,a2) = the thermodynamic temperature of a1 is double

than the  thermodynamic  temperature  of  a2.  The  empirical  side  of  f(a1) = 2f(a2)  is  a1 ≈f (a2 °f a3),

where  a2 ≈f a3 and °f is a combination operation between objects  in A. The fact is  that no such

combination  operation  °f is  known.  On  the  other  hand,  a  relation  between  thermodynamic

temperature and length is known (condition 1), as implemented in a suitable transducer, such that

were f(a1,a2) then  g(a1,a2),  e.g.,  a1 would be six times longer  than  a2 (thus assuming that the

constant sensitivity of the transducer is 6/2 = 3 length unit / temperature unit).

On the basis of this example, let us compare the structure of the previous inference in the cases of

thermodynamic (ratio PET) and thermometric (interval PET) temperatures:

thermodynamic temperature thermometric temperature

temperature is transduced to length

a1 is six times longer than a2 (observation of g(a1,a2))

the length value of a1 is six times greater than the length value of a2 (representation as (g(a1),g(a2))

the temperature value of a1 is six times greater than the temperature value of a2

(representation as (f(a1),f(a2)) 

a1 is six times warmer than a2

(inference that f(a1,a2))
no inference:

 interval PET does not preserve ratios

This confirms that the distinction between direct and indirect evaluations prevents identifying PETs

with classes of morphisms but does not hinder the PET-based framework proposed here.

5. Conclusions: some consequences of the concept of PET

The type of a consistently informative evaluation f is derived from the structure of its range V, that

in its turn is characterized by its associated transformation group. This leads to a straightforward

interpretation of the traditional classification of concepts within the standpoint grounded on the

24



concept of PET.

- A concept is  qualitative if its application to a given domain of objects implies the possibility of

mapping them into a structure V that is simply a set, so that any injective transformation preserves

the condition of information consistency for the mapping.

- A concept is comparative if its application to a given domain of objects implies the possibility of

mapping them into  a  structure  V that  is  an ordered  set,  so  that  any monotonic  transformation

preserves the condition of information consistency for the mapping.

-  Finally, a  concept  is  quantitative if  its  application  to  a  given  domain  of  objects  implies  the

possibility of mapping them into a structure  V that is an ordered set of numbers whose values,

ratios, or interval ratios, are preserved by the transformations in the corresponding transformation

group.

On the other hand, by introducing PETs the focus shifts from concepts to evaluation / measurement

processes, and some generality and flexibility are gained. In particular, this standpoint allows taking

into account the fact that the same general property can be evaluated by processes of different PET,

where  the  change from one type  to  a  structurally  richer  one  can  be interpreted  as  a  structural

upgrade  of  the  evaluation,  whereas  the  change  from  one  type  to  a  structurally  poorer  one

corresponds to a structural downgrade of the evaluation itself.

Downgrading from a structurally richer than nominal type is always possible, as it is obtained by

neglecting some structural information that in principle could be preserved by a suitable evaluation.

For example, a length evaluation can be downgraded from ratio to interval type, by interpreting it as

a distance  evaluation,  i.e.,  making the  “zero”  relative,  but  also to  ordinal  type,  by assuming a

ranking such as “long”, “average”, “short” for the set of values (as in the example presented in

footnote 12). On the other hand, upgrading is more demanding, since it requires the introduction of

appropriate  structural  information  with  respect  to  the  previous  evaluations.  In  particular,  the

upgrade from interval to ratio type implies a “natural zero” to be set, and the upgrade from ratio to

absolute type implies a “natural unit” to be set. The possibility of upgrading could be obtained by

scientific discoveries concerning empirical laws that connect different general properties and thus

allow transferring PETs from general properties to general properties according to laws. Hence, for

each  general  property  the  available  knowledge  in  each  historical  period,  both  procedures  and

theories, establishes the structurally richest PET to which evaluations can be upgraded.

Such PET can be considered the type for the given general property.

As an example, temperature, traditionally deemed to be an ordinal property, was upgraded to an

interval property with the introduction of the thermometric (e.g., Celsius and Fahrenheit) scales.

Accordingly,  while  PETs  are  structurally  related  to  evaluations  and  therefore  are  invariant
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characteristics of evaluations, the classification of a general property under a given type is a time-

dependent characteristic30.

The analysis can be now completed by proposing some comparisons between the standpoint based

on the concept of PET (“PET theory” just for short) and the one assumed in the VIM3, and by

discussing  some  consequences  of  the  PET  theory  with  respect  to  the  characterization  of  the

concepts of property evaluation, measurement, and property value.

5.2. The advantages of the concept of PET

The advantages  of  the  PET theory  relative  to  the standpoint  assumed in the VIM3 are mainly

connected to the following points.

1) Focus of the concept to be defined.

As already pointed out, the first difference relates to the very object to be characterized. Indeed, the

PET theory focuses on the operative concept of property evaluation, and allows deriving a concept

of property type as a specific, “upper bound”, case. On the other hand, the VIM3 directly, although

implicitly,  attributes  a  type  to  subordinate  concepts  of  ‘property’.  The  greater  generality  and

correctness of the PET theory do not seem in discussion here.

2) Features of the definition.

The PET theory unambiguously characterizes types in terms of structural invariance, and it is not

forced to recur to any further undefined concept to introduce the PET-related concepts. The PET

theory highlights how conventional is the threshold between “properties that are quantities”, those

having a magnitude according to the VIM3, and “properties that are not quantities”. The distinction

between quantities and non-quantities, that is sometimes even interpreted as a distinction between

‘quantities’ and ‘qualities’,  is  certainly  controversial:  in particular, ordinal  properties  have been

traditionally  considered  non-quantities,  as  Maxwell  did,  under  the  Euclidean  assumption  that

measurability  implies  evaluating  ratios  to  units.  The  PET theory  simply  allows  forgetting  this

distinction.

As a consequence, within the PET theory ‘magnitude’, a primitive concept in the VIM3, turns out to

be definable in terms of PET: a property is a quantity (and thus has a magnitude according to the

VIM3) if and only if it is an instance of a kind of property that can be evaluated by means of an

evaluation process whose PET is at least ordinal.

3) Taxonomy induced on the defined entities.

With respect to the VIM3, the PET theory offers a better granularity, and in particular is able to

distinguish among interval,  ratio, and absolute properties /  evaluations,  that the VIM3 seems to

30 Were further PETs taken into account, the relation based on structural richness could become a partial order (as it is in the case, in
particular, of the log-interval type). Since in a partial order the upper bound is not guaranteed to be unique, a property could even
have more than one type...
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maintain undifferentiated within the undefined concept of quantity with unit. Furthermore, the basic

relations among types in the PET theory are of inclusion, not of opposition as in the VIM3. For

example, in the PET theory ordinal type is nominal type plus order, so that an ordinal property is a

nominal  property  that  is  consistently  informative  on order, whereas  according  to  the  VIM3 an

ordinal quantity is not a nominal property. Accordingly, the PET theory better  accounts  for the

historical phenomenon of the evaluation upgrade and the operative phenomenon of the evaluation

downgrade, and it clearly justifies why algebraically weak functions can be applied to structurally

rich evaluations (e.g., in statistics, the median to ratio evaluations) and instead algebraically strong

functions are not to be applied, in general, to structurally poor evaluations (e.g., the mean to ordinal

evaluations). Hence, the diagrams in Figures 1 and 2 in the PET theory become as in Figure 12:

Figure 12. ‘property’ and some of its subordinate concepts according to the PET theory (inclusive version).

The  generality  of  the  PET theory  allows  easily  adapting  inclusive  definitions  to  an  exclusive

version, were this considered appropriate.  Figure 13 takes into account both inclusions (vertical

relations)  and  oppositions  (horizontal  relations)  between  concepts  (diagram at  the  left),  where

inclusions and oppositions are determined according to the PETs characterizing the related kinds of

properties (diagram at the right):

Figure 13. ‘property’ and some of its subordinate concepts according to the PET theory (exclusive version).

4. Consequences for the concept of property evaluation.

With respect to the Stevens’ and the representational standpoint, the PET theory takes into account

the structure of the evaluation, and not only its results: this allows distinguishing between direct and

indirect  evaluations,  only  the  former  being  explicitly  characterized  as  morphic  mappings;

furthermore,  while  the  PET  theory  deals  with  generic  evaluations,  it  can  be  specialized  to

measurement by emphasizing the role of references and therefore calibration.

5. Consequences for the concept of measurement.
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The PET theory allows reinterpreting the very concept of measurement with respect to the VIM3

position, according to which a measurement is a “process of experimentally obtaining one or more

quantity values that can reasonably be attributed to a quantity”. This definition is critically based on

the two adverbs “experimentally” and “reasonably” that are undefined and unjustified: only [2.1

Note  2  –  corrected  version],  “measurement  implies  comparison  of  quantities  or  counting  of

entities”,  gives  some explanation  on what  this  experimental  activity  could be.  The PET theory

justifies this  implication and makes it  more specific:  the comparison of objects  with respect to

general properties is necessary for measurement, but not sufficient. Indeed, internal comparison is

only able to convey the information that, e.g., two objects have the same length, but not which

length is, and therefore which property value should be assigned to represent it. Measurement is

instead based on reference comparison, thus highlighting why and how calibration is a requirement

for measurement. 

6. Consequences for the concept of property value.

The PET theory gives a general account of the concept of property value, operatively interpreted as

selector within a classification,  and easily allows to specialize it in the case of structurally rich

PETs. In particular, in the case of ratio PET the reference set R embodies a concept of ‘unit object’

that,  directly  or indirectly, can be additively composed to generate all  objects  in R, so that the

number of the repetitions, together with the unit, uniquely identify such objects. Accordingly, the

Maxwell’s formula:

Q = {Q}[Q]

is interpreted as a special case of:

P = {P}[P]

where  P is  an  individual  property  and  {P}[P]  a  way  of  representing  it  by  means  of  a  given

classification [P] and a given class {P} within it. In the case of additive properties, the classification

remains usually implicit. Indeed, the formula Q = {Q}[Q] can be interpreted both:

- in an operative way: the quantity Q of an object a is indistinguishable from the individual quantity

generated by composing {Q} times the reference individual quantity [Q];

and:

-  in  an  abstract  way:  the  quantity  Q of  an  object  a is  included  in  the  class  {Q}  within  the

classification provided by the real numbers once [Q] is taken as the unit.

This interpretation mirrors the sense of the general formula P = {P}[P].

7. Consequences for the concept of measurability.

Finally, in the context of the PET theory the assumption that only quantities are considered to be

measurable (in [5.13], the VIM3 calls “examination” the evaluation of nominal properties) appears
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to be based on a conventional choice. The possible rephrasing of the definition of ‘measurement’, as

“process of obtaining one or more property values that can be attributed to a property of an object

by means of its experimental comparison to a reference”, seems to be not less consistent than the

VIM3 definition, and exemplifies the possibility of avoiding distinctions that are not grounded on

conditions related to experimental facts.
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