A pragmatic perspective on measurement

Luca Mari Università Cattaneo – LIUC Italy Imari@liuc.it

Lecture given at the Cranfield University, UK 23.11.11 [revised and extended version, 6.12.11]

Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

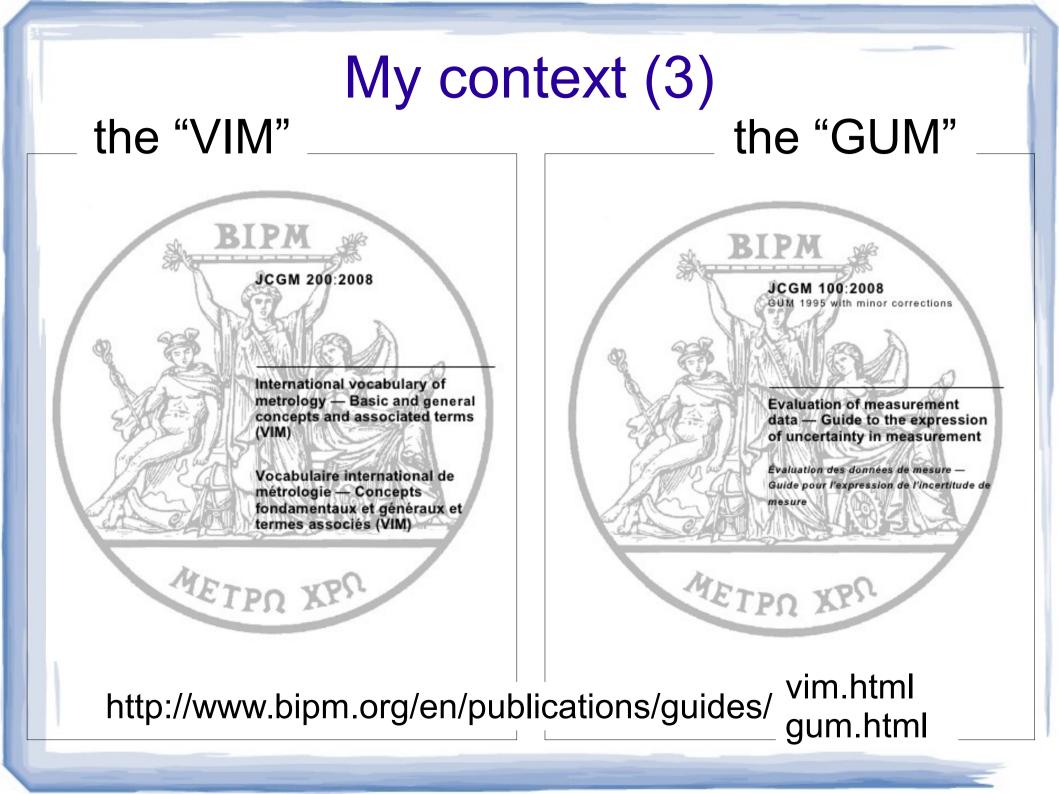
A pragmatic perspective on measurement

Targeting measurement

"Those sciences, created almost in our own days, the object of which is man himself, the direct goal of which is the happiness of man, will enjoy a progress no less sure than that of the physical sciences; & this idea so sweet, that our nephews will surpass us in wisdom as in enlightenment, is no longer an illusion. In meditating on the nature of the moral sciences, one cannot help seeing that, as they are based like the physical sciences upon the observation of fact, they must follow the same method, acquire a language equally exact & precise, attaining the same degree of certainty."

[Condorcet, 1782]

My context (1)


TC1-Education and Training in Measurement and Instrumentation **TC2-Photonics** TC3-Measurement of Force, Mass and Torque **TC4-Measurement of Electrical Ouantities TC5-Hardness Measurement TC7-Measurement Science** TC8-Traceability in Metrology **TC9-Flow Measurement TC10-Technical Diagnostics** TC11-Metrological Infrastructures TC12-Temperature and Thermal **Measurements** TC13-Measurements in Biology and **Medicine**

TC13-Measurements in Biology and Medicine TC14-Measurement of Geometrical Quantities **TC15-Experimental Mechanics** TC16-Pressure and Vacuum Measurement TC17-Measurement in Robotics TC18-Measurement of Human **Functions TC19-Environmental Measurements TC20-Energy Measurement** TC21-Mathematical Tools for **Measurements** TC22-Vibration Measurement TC23-Metrology in Food and Nutrition TC24-Chemical Measurements

(JCGM) Joint Committee for Guides in Metrology:

- (BIPM) Int.I Bureau of Weights and Measures
- (IEC) Int.I Electrotechnical Commission
- (IFCC) Int.l Federation of Clinical Chemistry and Laboratory Medicine
- (ILAC) Int.I Laboratory Accreditation Cooperation
- (ISO) Int.I Organization for Standardization
- (IUPAC) Int.I Union of Pure and Applied Chemistry
- (IUPAP) Int.I Union of Pure and Applied Physics
- (OIML) Int.I Organization of Legal Metrology

My background

- V.Lazzarotti, R.Manzini, LM, A model for R&D performance measurement, *Int. J. of Production Economics*, 2011
- A.Frigerio, A.Giordani, LM, Outline of a general model of measurement, *Synthese*, 2010
- LM, On (kinds of) quantities, Metrologia, 2009
- P.Carbone, L.Buglione, LM, D.Petri, A comparison between foundations of Metrology and Software Measurement, *IEEE Trans. Instrumentation and Measurement*, 2008
- LM, The problem of foundations of measurement, *Measurement*, 2005
- LM, Epistemology of measurement, *Measurement*, 2003
- LM, Beyond the representational viewpoint: a new formalization of measurement, *Measurement*, 2000

A basic hypothesis

Being an infrastructural, widespread activity, performed by human beings since millennia, measurement is laden with myths

Backgrounder

A few basic concepts and terms:

given an object (phenomenon, event

How is "property" different to "measurand"? And how do these relate to the (psychometric) term "construct"?

o be

- having a property (attribute, observable, quantity, ...)
- measurement is a property-related process
- which, applied to the object, produces an information entity
- interpreted as a property value
- and (with other information) called the **meas** *objects having on t properties measurement properties measurement properties*

Measurement is a property representation process

Backgrounder (2)

Measurement-related models typically assume that:

- there are **general properties** (*e.g., length, leadership*)
- some general properties can be considered of some objects (*leadership of a person but not of a table*)
- a general property of an object is an individual property of that object (*length of a given table, leadership* of a given person)
- a measurement problem is about a general property (I would like to measure leadership)
- measurement is applied to individual properties (I am measuring the leadership of this person)
- a general property is characterized by a set of property values (*positive real numbers for length*)
- an individual property is represented by a property value (the *length of this table is* 2.34 m)

Backgrounder (1

Say more about what

fact".

you mean by "empirical These assumptions lead to a functional me involved entities where:

- general properties are described as functions,
- whose domain is a set of objects
- and whose range is a set of individual properties

 $p_{gen}: \{objects\} \rightarrow \{p_{ind}\}$

(your leadership is modeled as *leadership(you*), so that the fact that leadership is not considered of tables, i.e., *leadership(this table)* is wrong, is modeled as the hypothesis that tables do not belong to the domain of the function *leadership*)

Such functions describe empirical facts

Measurement is aimed at representing individual properties (this is written with the "=" symbol, length(this table) = 2.34 m, properly meaning "is represented by", not "is equal to")

Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

A pragmatic perspective on measurement

What is the problem?

The previous description applies not only to measurement,

but generically to processes of assignment of property values,

(property) evaluations for short

(i.e. it gives necessary but not sufficient conditions to define 'measurement')

How is measurement characterized as a specievaluations measurements

What is the importa

Say more about what you mean by "reliability".

- From an epistemic point of view: measurement results are considered conveying "reliable" information on properties: what is the source of such reliability?
- From a pragmatic point of view: it is socially accepted that obtaining measurement results requires employing some resources: under what conditions is such acceptation justified?

Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

A pragmatic perspective on measurement

Is it an already solved problem?

Several standpoints...

Measurement is:

- S1: process producing Euclidean 'measures'
- S2: physical transducer operation
- S3: morphic representation
- S4: decision making support

S1. Measurement as a process producing Euclidean 'measures'

"A magnitude is a part of a magnitude, the less of the greater, when it measures the greater; the greater is a multiple of the less when it is measured by the less; a ratio is a sort of relation in respect of size between two magnitudes of the same kind."

[Euclid, Elements, Book V, definitions 1-3]

→ A property is measurable because it can be represented by property values of the form $n \cdot u$, where n is an integer number and u is a "unit" property

S1. Significance / benefits

 This standpoint is the basis of the classical concept of **quantity** (a quantity is a property representable as multiple of a unit), and therefore of quantity calculus / dimensional analysis, where quantities are represented, in Maxwell's notation, as:

 $q = \{q\}[q]$

q: quantity to be represented
{q}: numerical quantity value
[q]: unit

 The International System of Quantities (ISQ), and then the International System of Units (SI), are based on quantities in the Euclidean sense

S1. Objections

- This standpoint does not give any justification of the claimed reliability of measurement results ("according to my experience, I can see that this object is 1,2 m long" expresses in fact a ratio of two "magnitudes"; nevertheless, this is hardly acceptable as a measurement result)
- It is today customarily accepted that less-than-ratio properties (e.g., ordinal) can be measurable
- This characterization gives neither necessary nor sufficient conditions of measurability

S2. Measurement as the process performed physical transducers".

The "geometrical paradigm" has been successfully exported to the physical world and embedded in a metrological infrastructure

→ A property is measurable because it is the input signal of a properly calibrated and operated instrument realizing a physical transduction effect

S2. Significance / benefits

- This standpoint emphasizes that measurability has to do with the way the information on the property is acquired, not (only) the way it is represented
- This characterization could give sufficient conditions of measurability

S2. Objections

- Although effective in measurement of physical properties, this standpoint is useless if the aim is to characterize the measurability of non-physical properties
- This characterization does not give necessary conditions of measurability

S3. Measurement as a morphic representation of properties

"Measurement is the assignment of numerals to objects or events according to rule, any rule." [Stevens 1959]

As the outcome of a critical analysis on the possibilities of applying measurement in social sciences, measurement has been axiomatized as a morphic mapping from properties to property values (e.g., if $p(a) <_p p(b)$ then $m_p(a) < m_p(b)$)

→ A property is measurable because it can be mapped to a set of property values and the mapping is a morphism

S3. Significance / benefits

- This standpoint has been very fruitful in terms of its theoretical consequences, as it is the basis of the so called "representational theories of measurement": multiple "measurement scales" are identified (e.g., nominal, ordinal, ...), and for each of them a representation theorem (what conditions are required for a morphic mapping to be defined) and a **uniqueness** theorem (what conditions constrain the values assigned by the morphic mapping) are given
- This characterization gives a parametric set of (plausibly) necessary conditions of measurability

S3. Objections

 As for the first objection to S1, this standpoint does not give any justification of the claimed reliability of measurement results ("according to my experience, I can see that the object *a* is shorter than *b*, and therefore the length value I have assigned to *a* is less than the length value assigned to *b*"; nevertheless, this is hardly acceptable as a measurement result)

This characterization does not give sufficient conditions of measurability S4. Measurement as a process supporting decision making

A measurement result is the "symbolic representation of event, state or attribute, to aid in the making of a decision"

[Nicholas, White 2001]

→ A property is measurable because its values, as obtained by means of measurement, are useful in decision making

S4. Significance / benefits

- This standpoint emphasizes that, as any production process, measurement should be justified in terms of the usefulness of the results it produces
- This characterization might give a (very loose) necessary condition of measurability

S4. Objections

- Is it really appropriate to characterize measurement as any "useful" (?) "symbolic representation" (?)?
- This characterization does not give actual conditions of measurability

An open problem, then

Measurement is:

- S1: process producing Euclidean 'measures'
- S2: physical transducer operation
- S3: morphic representation
- S4: decision making support

Several standpoints, but none of them fully appropriate to characterize a concept of measurement general enough to encompass non-physical properties but specific enough to exclude generic evaluations

Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

A pragmatic perspective on measurement

Beyond S1 – S4?

The hypothesis that measurement is a property evaluation whose results convey reliable information on the measurand is not related to:

- the nature of the object under measurement or of the measurand (both physical and non-physical properties should be in principle measurable)
- the algebraic structure of the set of property values (not only Euclidean quantities should be in principle measurable)

What is the epistemic source of such reliability which pragmatically justifies employing some resources to obtain measurement results?

Conceptual propo

This reliability is justified in terms features expected for measureme principle are supposed to convey i

In the phrase "specific to the measurand, and independent of any other property of the object or the surrounding environment", would it be OK to add a few words to say the following: "specific to the measurand, and independent of the measurement of any other property of the object or the surrounding environment".

- specific to the measurand, a the surrounding environment any other property of the object concentration environment, which includes both the measuring system and the subject who is measuring
- interpretable in the same way by different users in different places and times, and therefore expressed in a form independent of the specific context and only referring to entities which are universally accessible

Lexical proposa

Give some examples of objectivity and intersubjectivity.

The supposition that the information composition composition that the information composition composition the information composition composition composition composition composition composition composition composition composition com

- is specific to the measurand, and therefore to the object of measurement, is a requirement of objectivity
- is universally interpretable, and therefore is the same for different individuals, is a requirement of intersubjectivity

Accordingly, objectivity and intersubjectivity are independent features

(an evaluation might be objective but not intersubjective, or intersubjective but not objective)

Pragmatic propos

Neither objectivity nor intersubjectivity measurement results are Boolean (i.e. features

Perhaps, after this, review S1-S4 and mention important differences/similarities.

Measurement results have an overall degree of "quality", customarily expressed in terms of their (un)certainty and related to their objectivity and intersubjectivity

Hence, if the usefulness of measurement results has to be taken into account then their uncertainty must be less than a *target measurement uncertainty* ("measurement uncertainty specified as an upper limit and decided on the basis of the intended use of measurement results"), i.e., they must be

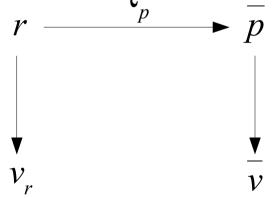
Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

A pragmatic perspective on measurement

A simple model of Measurement: $p \longrightarrow v$

is a structured, empirical + representational, process, based on the possibility of **transducing** p to a property \overline{p} to a (the "indication"): $p \xrightarrow{\tau_p} \overline{p}$

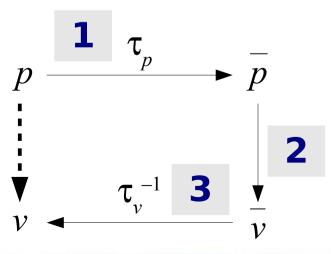

and then mapping \overline{p} to a value \overline{v} (the "indication value"): $p \xrightarrow{\tau_p} \overline{p}$

where the empirical mapping $\boldsymbol{\tau}_{\!\scriptscriptstyle p}$ is required to be **calibrated**

Calibration

Let us suppose that a set of standards is available such that each of them:

- realizes a reference property r
- is associated with a given property value v_r
- is transduced to an indication \overline{p} , and then associated with an indication value \overline{v}_{τ}



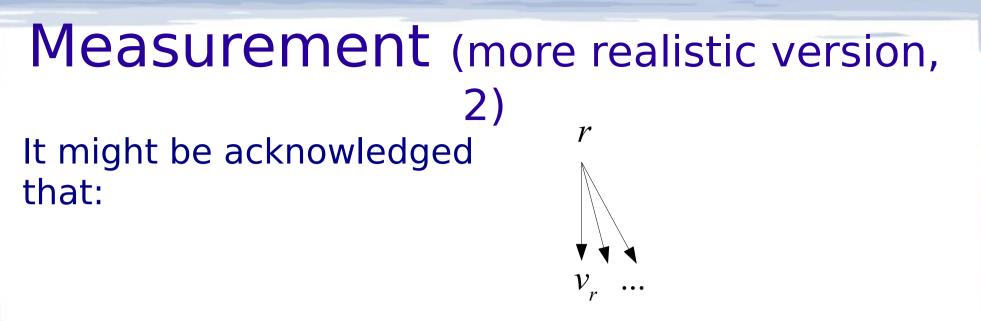
Then a mapping τ_v ("calibration function") can be construed: $v \xrightarrow{v} \overline{\tau_v} \overline{v}$

Measurement (simplest, ideal version)

Under the hypothesis that:

- the calibration function can be inverted
- the transduction is stable (the function did not change) the measurement $p \rightarrow v$ is performed by:
 - **1**. transducing the measurand p to an indication \overline{p}
- **2.** mapping the indication \overline{p} to the indication value \overline{v}
- **3**. mapping the indication value \overline{v} to a measurand value v

Measurement (more realistic version, 1) It might be acknowledged that: $p \xrightarrow{\tau_p} \bar{p}$...

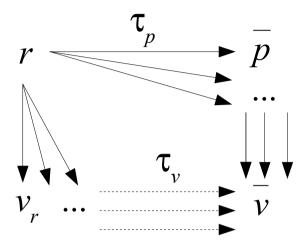

the transducer is not perfectly stable, because it is sensitive to some **influence properties** other than the measurand

(i.e., the transducer does not behave as an ideal filter)

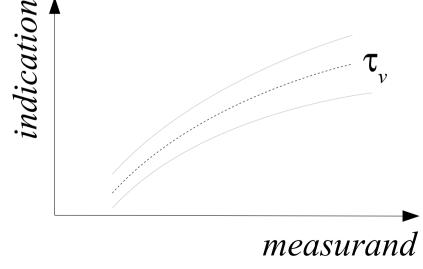
so that the indication \overline{p} depends not only on the measurand p but also on such other properties

This reduces the objectivity of measurement: measuring systems are designed to minimize such effects

and therefore to maximize objectivity

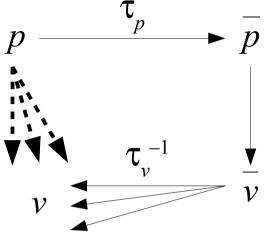

the standards are not perfectly stable, and for all nonprimary standards the information on the reference property value is uncertain

so that the reference properties r are not mapped to a single property value v_r

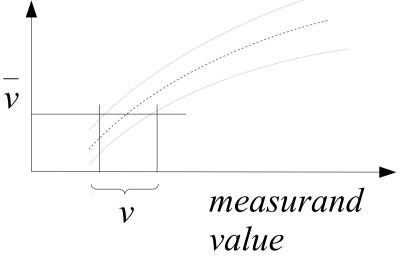

This reduces the intersubjectivity of measurement: standards are designed to minimize such effects and therefore to maximize intersubjectivity

Calibration (more realistic version)

Since:



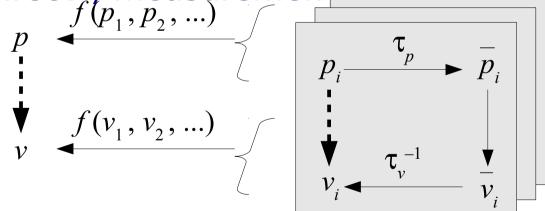
then the mapping τ_{v} becomes a "calibration strip":



Measurement (more realistic version)

As a consequence, even when a single transduction is performed:

indication value


measurement results are affected by uncertainty

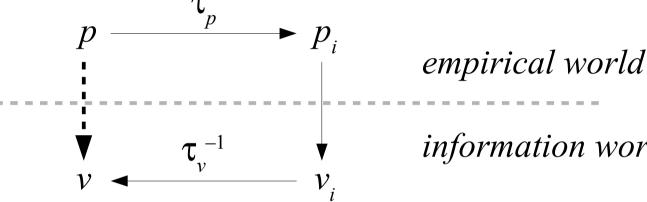
Pragmatically: measurement uncertainty should be less than target uncertainty

Measurement (extended version)

In a more general case, the measurand p might be not the input property of a transducer, but is dependent, through a given function f, on one or more properties p_i that can be transduced (or whose values are somehow known)

The previous process becomes a component of the whole ("indirect") measurement process:

Hence, the uncertainty on the values v_i must be "propagated" through f to compute the uncertainty of v


Outline

- Introduction (to myself and the subject)
- An important problem
- Four standpoints, no (complete) solutions
- A proposal
- A related measurement model
- Concluding remarks, particularly about measurement of non-physical properties

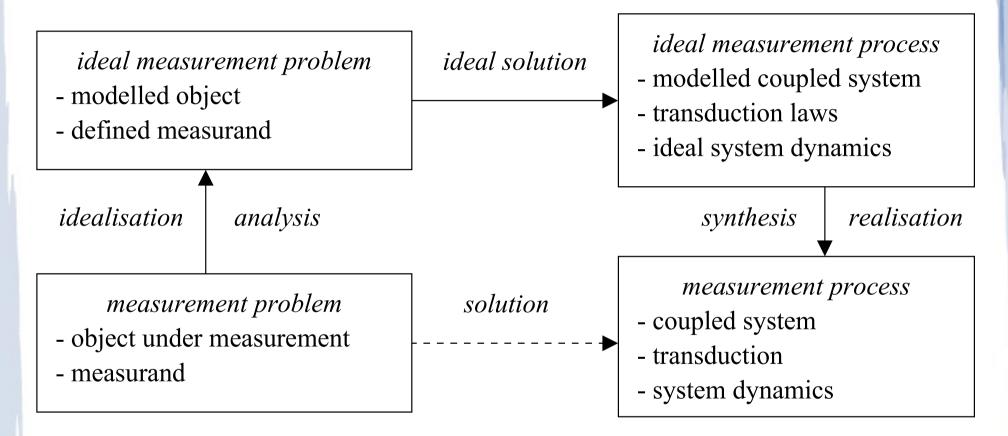
A pragmatic perspective on measurement

The problem of measurand

Measurement bridges two worlds...

information world

The last step is to **interpret** the obtained property value, v, as a value of the measurand, i.e., the property **intended** to be measured:


is the property which I have measured actually the property which I intended to measure?

'Definitional uncertainty'

"component of measurement uncertainty resulting from the finite amount of detail in the definition of a measurand"

Note: "definitional uncertainty is the practical minimum measurement uncertainty achievable in any measurement of a given measurand"

Models

A source of uncertainty comes from the "correspondence" between the problem/process and its model

Measurement of non-physical properties

(just to trigger the discussion)

Nothing in this presentation implies the physical nature of measurands; hence this analysis and its conclusions seem to be applicable also to nonphysical properties

Nevertheless, the some differences (typically) remain

Differences...

Slide 49: What would be a likely alternative to "descriptive"?

1. Physical quantities are mutually rela laws; this allows:

- minimizing primitive ("purely operational") concepts
- cross-validating measurand definitions
- cross-checking measurements results
- 2. A global metrological infrastructure is well established for physical quantities
- 3. The measurement of physical properties is a purely descriptive process
- 4. Physical properties have been measured since millennia

A pragmatic perspective on measurement

Thank you for the kind attention

Luca Mari Imari@liuc.it